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AN ABSTRACT OF THE THESIS OF

Adnan Imad Nahlawi for Master of Science
Major: Physics

Title: Counter-Rotating Disks Around Black Holes

The collective behavior of stars around a black hole provides great insights into the struc-
ture of galaxies. Thus, the focal point of this thesis is to study the dynamics of a cluster
of stars within the radius of influence of a black hole in a galactic nucleus. Our approach
to this nearly Keplerian system follows a semi-analytical treatment of the collisionless
Boltzmann equation. Not interested in the fast orbital phase, we average over it and
we focus our work on the study of the secular evolution of the resulting massive rings
of constant semi-major axes. We further incorporate counter-rotation between stars and
we divide our rings into two populations, prograde and retrograde, where different or-
bital semi-major axes are assigned to each population. Having the self-consistency of the
problem with the absence of collisions, we represent the two populations of rings by two
separate distribution functions (DFs), which satisfy two separate collionsless Boltzmann
equations (CBEs) governed by two orbit-averaged Hamiltonians (ring Hamiltonians). To
describe populations of rings of small eccentricities, we expand the ring Hamiltonians
to fourth order in the eccentricities and we build upon Jeans’ theorem to construct sta-
tistical distribution functions representing the eccentric rings. When the dispersion in
eccentricity is relatively small, these distribution functions are completely described by
their centroids. The dynamics of centroids are shown to be equivalent to a two-degree-of-
freedom Hamiltonian system. This system turned out to be integrable due to the presence
of two conserved quantities, the Hamiltonina itself, and another quantity corresponding
to the total angular momentum of the two populations. Using the conservation of the an-
gular momentum, we reduce the system into a one-degree-of-freedom system that can be
studied through phase space analysis. The linear as well as the nonlinear dynamics of the
system are studied, where a criterion of linear instability is derived for initially circular
discs. In addition, the phase space structure and bifurcations are explored as a function
of parameters like the angular momentum, the mass and the semi-major axis ratio of the
stellar populations.
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CHAPTER I

INTRODUCTION

One of the challenging and inspiring aspects of Astrophysics is the study of

stellar objects (e.g. galaxies, star clusters, etc) so large and so far to the extent that we

cannot experiment on them. Actually, all what we can measure of these objects are billion-

year late electromagnetic waves reflecting an extremely old image of them. Our only hope

to better understand these objects is through the astrophysical tools of analytical modeling

or computational numerical simulations.

In analytical modeling, theorists try to construct mathematical models that match

a set of observational constraints and satisfy physical laws at the same time. To model a

star cluster for example, a representative library of allowed orbits in the given potential is

determined (Schwarzschild’s orbit superposition technique) [1]. One tries then to find the

combination of orbits that best fits the observed photometry and kinematics of the stellar

object. The application of such techniques usually allow for a wide range of models.

However, the problem remains to choose the "real" model between all possible models.

We assume that the stability and the instability of the system can be used to discriminate

between possibilities [2]. It may reject a model or help in choosing between several

alternate or conflicting models.

Galactic nucleus is one of the exiting stellar objects studied nowadays. Galactic

nucleus is a compact region at the center of a galaxy (within 40 pc of the Galactic center).

It is very bright, its luminosity is much higher than the normal one. It is believed to contain

high density of stars (the average distance between neighboring stars in the Galactic center

is only 0.005 pc) orbiting around a massive black hole (∼ 4 million the mass of the sun).

The dynamics of a star in a galactic nucleus involves physical processes of com-
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plicated nature which could be simplified by several approximations especially in a small

region around the Black hole. For instance, if we consider a region around a black hole

where the mass of the enclosed stellar system is small enough compared to the mass of the

black hole, we can consider each star as moving under a dominant gravitational attraction

of the black hole plus a relatively small, but not negligible, self-gravity of the stellar sys-

tem (i.e. all the other stars). In this case, we can regard the dynamics in this region of the

galactic nucleus as a perturbation of the Kepler problem (where the only existing force is

the force due to the central body) [2], and each star may be thought of as moving on a

Keplerian ellipse that slowly presses and deforms in time. We call such systems "nearly

Keplerian" systems.

As an example of a nearly Keplerian system, we take the center of a Milky-way-like

galaxy which contains a black hole of mass ∼ 4× 106 M�. Based on the stellar density

in this compact region, one can show that the enclosed stellar mass within a radius of 1

pc is ∼ 1.4× 106 M� which is less than the half of the mass of the black hole. So the

stellar system in the Galactic center can be considered as a nearly Keplerian system for

r . 1 pc. Moreover, ignoring relativistic effects, our discussion becomes applicable only

to distances beyond several Schwarzschild radii from the black hole.

Nearly Keplerian stellar systems may be subject to secular stabilities as well as instabil-

ities due to the slow precession of counter-rotating stellar populations around the black

hole [2]. The secular evolution of such systems shows a rich dynamics leading to var-

ious equilibrium configurations corresponding to uniformly precessing eccentric orbits

of aligned or anti-aligned periapses. These equilibria (stable or unstable) could explain

many astronomical observations like the lopsidedness of some galactic nuclei. In fact,

Hubble Space Telescope shows that the nucleus of M31 (Andromeda galaxy) contains

two separated components of different brightness [3].

2



Fast stars

Slow stars

Figure 1: Andromeda Galaxy, M31

The brighter component is offset from the center of the galaxy, whereas the dim-

mer component falls at the center of the galaxy. The currently favored model that explains

the main observed features assumes that the nucleus is an eccentric stellar disk, composed

of stars traveling on nearly Keplerian orbits of aligned periapses around a black hole [4].

The model suggests that the periapses of the orbits are aligned. The brighter component

is the region of the nuclear disk close to apoapsis and has high surface brightness because

the stars slow down near apoapsis, while the dimmer component is the region of the nu-

clear disk close to periapsis and has lower surface brightness because the velocity of stars

near the periapsis is high so they weakly contribute to the surface brightness [5].

In this work, we develop a semi-analytic treatment of the self-consistent prob-

lem of cluster of stars around a massive black hole, and explore the associated dynamics.

The theory provides conditions for linear instability of counter-rotating clusters, as well

as the location and nature of equilibria as a function of parameters like the total angular

momentum of the stellar system, the mass and the semi major axis ratio of the counter-

rotating populations. The stars in the cluster are assumed to move on nearly Keplerian

orbits around the black hole due to the dominance of the black hole within its radius of

influence. As we are not interested in the fast orbital phase, we average over it and we

focus our work on the study of the secular evolution (the slow precession and deforma-
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tion) of the resulting massive rings (Gaussian rings). Having the self-consistency and

the absence of collisions in the problem, we represent the two populations of rings by

two distribution functions (DFs), which satisfy collionsless Boltzmann equations (CBEs)

governed by orbit-averaged Hamiltonians (ring Hamiltonians). Restricting our problem

to populations of rings of small eccentricities, we then expand the ring Hamiltonians to

fourth order in the eccentricities. Using Jeans’ theorem, we construct our time-dependent

DFs. The resulting DFs turn out to be such that their isocontours are ellipses centered at

moving origins. Those moving origins, refer to as the centroids, satisfy four equations.

The four centroid equations are shown to be equivalent to an underlying Hamiltonian cor-

responding to a two-degree-of-freedom system. This system turn out to be integrable due

to the presence of two conserved quantities, the Hamiltonina itself, and another quantity

corresponding to the total angular momentum of the two populations which allow us to re-

duce the system into a one-degree-of-freedom system that can be studied using the phase

space analysis.

The thesis is organized as follows. Chapter 2 provides a simple preview where

we start with studying the problem of one star around a black hole then the problem of

two stars around a black hole. These two problems lead us to the more general problem of

a cluster of stars around a black hole. We present general strategies and approximations

to solve such N-body problems and we introduced the collisionless systems. Chapter 3

contains a formulation of the problem of counter-rotating clusters of stars around a black

hole. In order to study the corresponding dynamics we model the system by specifying

the phase space, then constructing the distribution functions representing the system and

finally formulating the Hamiltonians governing the collisionless Boltzmann equations.

Chapter 4 contains a complete study of the dynamics of DF centroids, starting from the

four equations introduced in chapter 3, then deriving the underlying Hamiltonian. The

chapter also provides a linear as well as nonlinear study of the centroid dynamics leading

to instability and phase space analysis. Finally, a summary and conclusions will be offered

in chapter 5.
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CHAPTER II

MOTIVATION

Before studying the dynamics of counter-rotating clusters of stars around a black

hole (which is an N-body problem with N very large), we would like to start with the

simpler problems of one star around a black hole and two stars around a black hole.

A. One star around a black hole

This is a two-body problem (Kepler problem), where we have two bodies that

interact with each other through their mutual gravitational attraction. For simplicity, we

treat the black hole and the star as if they are mass points, without any size. In this case

they will not collide, unless they happen to hit each other head-on. However, for random

initial conditions, the chance of such a collision is negligible. The two-body problem can

be considered as two independent one-body problems, a problem that involves solving for

the motion of one particle in an external static potential. Hence, the 2-body problem can

be solved analytically.

We now start solving our two-body problem by reducing it to two independent

one-body problems. Let x1 and x2 be the positions of the star and the black hole respec-

tively, and m1 and m2 be their masses. Applying Newton’s second law to the two masses

gives

F12 = m1ẍ1 (1)

F21 = m2ẍ2 (2)

where F12 is the gravitational force done on mass 1 (the star) by mass 2 (the black hole),

and F21 is the gravitational force done on mass 2 (the black hole) by mass 1 (the star).
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Adding equations 1 and 2 results in an equation describing the motion of the center of

mass:

m1ẍ1 +m2ẍ2 = F12 +F21 = 0 (3)

⇒ (m1 +m2)R̈ = 0 (4)

where we have used the fact that F12 =−F21 and where

R̈ =
m1ẍ1 +m2ẍ2

m1 +m2

R is the position of the center of mass of the system (star-black hole). The resulting

equations:

R̈ = 0 (5)

⇒ Ṙ = const (6)

show that the center of mass of the system moves with constant velocity. By contrast,

subtracting equation 2 from equation 1 results in an equation describing how the position

vector of the star relative to the black hole changes with time:

ẍ1− ẍ2 =
F12

m1
− F21

m2
(7)

⇒ r̈ = (
1

m1
+

1
m2

)F12 (8)

where we have again used Newton’s third law F12 = −F21 and where r = x1− x2 is the

relative position vector from the black hole to the star. The force F12 between the star and

the black hole is the gravitational force which is only a function of their separation r and

it is given by:

F12 =−
Gm1m2

r2 r̂ (9)
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where r̂ = r
r . Equation (8) can therefore be written:

µ r̈ =−Gµ(m1 +m2)

r2 r̂ (10)

where µ = m1m2
m1+m2

is the reduced mass. From this equation, we see that the star moves

around the black hole as if it was a point particle of mass µ moving under the gravita-

tional force of a stationary body of mass (m1 +m2) located at the position of the black

hole. Since this gravitational force is always pointing towards the black hole, we know

from spherical symmetry that the angular momentum vector L of the fictitious particle

is conserved in magnitude and direction. Conservation of the direction of L implies that

the particle’s motion lies in a plane perpendicular to the constant vector L. Thus, without

loss of generality, we can take the inclination angle θ = π

2 . The remaining generalized

coordinates can be then taken to be the polar coordinates (r,φ). The Lagrangian of this

problem is then given by:

L =
1
2

µ(ṙ2 + r2
φ̇

2)+
Gm1m2

r
(11)

Using the Lagrange equation for the coordinate r, and the conservation of the magnitude

L of angular momentum, we obtain:

µ r̈ =
L2

µr3 −
Gm1m2

r2 (12)

where L = µr2φ̇ . Switching from time to angle variables and substitute r = 1
u . This gives:

d2u
dφ 2 +u =

G(m1 +m2)µ
2

L2 (13)

which can be solved to give conic section solutions, including the elliptical orbit as a

special case. In this problem, we are mainly interested in the elliptical orbit solution
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given in the polar coordinates by

r(φ) =
a(1− e2)

1+ ecos(φ −φ0)
(14)

where e is the eccentricity and a the semi-major axis. In this case, the star orbits the black

hole on an ellipse, with the black hole being located at one of the foci of that ellipse.

Figure 2: Orbital elements

The elliptical orbit and the position of the star describing it can be defined in the

space by six quantities called the orbital elements [6]. The first element is the longitude

h of the ascending node, which is the angle from a reference direction to the ascending

node. The second element is the inclination i, which is the angle between the orbital plane

and a reference plane. The third element is the longitude g of periapsis, which defines the

orientation of the ellipse within the orbital plane. The fourth element is the eccentricity

e which is the measure of the elliptical departure from a circle. The fifth element is the

semi-major axis a, which is the half of the sum of the periapsis and apoapsis distances.

The sixth element is the mean anomaly ω , which defines the position of the orbiting star

along the ellipse at a specific time.

8



Note that for m1 << m2 (as it is the case for the black hole compared to the star)

we have

R =
m1x1 +m2x2

m1 +m2
' x2 (15)

Therefore, the black hole which is approximately located at the center of mass is consid-

ered as either at rest or moving with constant velocity in a straight line.

Although determining R(t) and r(t) is enough for understanding the behavior of the sys-

tem (star-black hole), the original trajectories may be obtained explicitly

x1(t) = R(t)+
m2

m1 +m2
r(t) (16)

x2(t) = R(t)− m1

m1 +m2
r(t) (17)

The total energy of the system (star-black hole) is conserved, not the energy of each body.

It is true that the energy of the individual particle is conserved in the one-body problem

and for the ’fictitious’ particle of mass µ in the two-body problem. But it is not true of

each of the separate bodies in the two-body problem. Same thing for the angular momen-

tum.

The 2-body problem (Kepler problem) can be used to provide a first order approximation

to the motions of several stars around a black hole where the stars are considered inde-

pendent. It can also serve as a starting point for the generation of analytical solutions for

the motions of several interacting stars around a black hole, through perturbation theory

[6].

B. Two stars around a black hole

This is a three-body problem where three bodies interact with each other through

their mutual gravitational attraction. Whereas the two-body problem was completely
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solved analytically, the three-body problem, apart from some special cases, is not solv-

able in the sense that analytical expressions describing the behavior of the bodies for all

times cannot be obtained [7]. In general, the three-body problem results in chaotic motion

with no obvious sign of a repetitious path. Hence, we have to do numerical calculations

for special configurations of initial conditions or some approximations using perturbation

theory for some convenient applications. Due to the large mass of the black hole relative

to the two stars, it is obvious that the mutual attraction between the two stars is so much

smaller than the black hole’s attraction upon them. Hence, we can regard the dynamics in

this case as a perturbation of the two-body problem (Kepler problem). We call this kind

of systems "nearly Keplerian systems". As a first order approximation, we can consider

the system as two independent two-body problems without taking into account the force

between the stars. With this approximation, the two stars will orbit the black hole on two

independent fixed ellipses with the black hole located at a common focus of these ellipses.

(fig. 3)

Figure 3: First approximation of the two-star-black hole problem: the two stars orbit the
black hole on two independent fixed ellipses.

On the other hand and as a higher order approximation, the system is considered

as a two-body problem (the black hole and one star) plus a perturbative force (due to the

second star). With this approximation, the two stars orbit the black hole on two slowly

varying ellipses with the black hole located at a common focus of these ellipses (fig. 14).

The ellipses may change orientation as well as shape. Note that the two stars may be

10



rotating in the same direction or counter-rotating, depending on the initial conditions and

the dynamical behavior of the system.

Figure 4: Second approximation of the two-star-black hole problem: the two stars orbit
the black hole on two slowly varying ellipses (in shape and orientation).

1. Orbital averaging

Under this approximation, one can differ between two different timescales; the

fast orbital timescale at which a star orbits the BH and the slow secular time scale at which

the stellar orbits evolve. When the timescale under consideration is much larger than the

orbital timescale and with certain assumptions concerning the secular time scale, we can

average over the orbital phase and focus our study on the secular evolution of the resulting

massive rings. Therefore, instead of dealing with a star that moves on a nearly Keplerian

orbit, we deal with a massive ring focused at the black hole. The massive ring is thought

of as an ellipse populated by many stars which are distributed inversely proportional to

their orbital velocity. For more information concerning the averaging process, see the

next chapter.
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C. Cluster of stars around a black hole in a galactic nucleus

This is an N-body problem where N bodies interact with each other through

their mutual gravitational attraction. As mentioned before, for N > 2 almost all problems

become non-integrable and we must resort to computational techniques or approximations

and perturbation theory [6]. This N-body problem is similar to the three-body problem

in the sense that it can be approximated in the same way but with perturbative force

corresponding to all the other stars instead of one star.

1. Galaxies as collisionless systems

As a first approximation, we discuss the subject of collisionless systems. We

might think that stars, as they move inside a galaxy, will experience strong encounters

with other stars as well as weak encounters that change the dynamics. The truth, however,

is different. Strong star-star encounters are extremely rare in galaxies, and the effects of

weak encounters are so slight that it takes an extremely long time for the dynamics of

galaxies to change substantially [8].

Starting with the strong encounters, we consider two stars of mass m that approach to a

distance r. We can consider this encounter as strong if the potential energy of the two

stars during this encounter is larger than the typical kinetic energy of a star in a galaxy [8]

Gm2

r
>

1
2

mv2 =⇒ r <
2Gm

v2

where v is the typical velocity of a star in the galaxy. Hence, a strong encounter occurs if

two stars approach to within a distance rs ≡ 2Gm
v2 .

As an example, consider a Milky-way-like galaxy where the typical velocity of a star is

v ≈ 200 km/s and its mass is roughly the mass of the sun, m ≈ 2× 1030 kg, using these

values, we can estimate the strong encounter distance as rs' 7×109 m. This is very small

relative to the typical separation a between stars in a galaxy; a ' ×1016 m. Therefore,
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strong encounters are very rare in galaxies. In practice, we can ignore their effect on the

dynamics of stars.

On the other hand, we can infer from the previous discussion that a weak en-

counter occurs if two stars approach to a minimum distance rs ≡ 2Gm
v2 . Weak encounters

in general cause only a small perturbation to the motions of stars in a stellar system, but

they are so much more numerous than strong encounters and may become more important

than strong encounters in a collective manner. We shall now determine the cumulative ef-

fect of large number of weak encounters on the velocity of a star crossing a galaxy.

Figure 5: A star of mass m approaching a perturbing star of the same mass at an impact
parameter b.

Consider a star of mass m approaching a perturbing star of the same mass m at an impact

parameter b. Assume that the impact parameter b is larger than rs. Hence, the encounter

between these two stars is a weak encounter. Because the encounter is weak, the ap-

proaching star is considered to be moving on a straight line where the tangential velocity

is constant and the change in velocity in the perpendicular direction is very small but not

negligible.

Let’s determine now the velocity change of a crossing star due to one weak en-

counter. At any time t when the separation between the two stars is r, the component of

the gravitational force perpendicular to the direction of motion will be

F⊥ =
Gm2

r2 sinθ (18)
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Taking r'
√

b2 + v2t2 where t = 0 at the point of closest approach and using sinθ = b
r '

b√
b2+v2t2 , we get

F⊥ =
Gm2b

(b2 + v2t2)
3
2

(19)

Applying Newton’s second law, perpendicular to the direction of motion we obtain

a⊥ =
Gmb

(b2 + v2t2)
3
2

(20)

⇒ dv⊥
dt

=
Gmb

(b2 + v2t2)
3
2
⇒ dv⊥ =

Gmb

(b2 + v2t2)
3
2

dt (21)

where v⊥ is the component at time t of the velocity perpendicular to the initial direction

of motion. To get the total change in velocity due to one encounter, we integrate from

time t =−∞ to +∞,

|∆v|= ∆v⊥ =
∫ v⊥ f

0
dv⊥ =

∫ +∞

−∞

Gmb

(b2 + v2t2)
3
2

dt (22)

After solving this integral

|∆v|= 2Gm
bv

(23)

As a star moves through space, it will experience a number of perturbations caused by all

the weak encounters. The resulting deflections in velocity ∆v are random in direction, so

they add up to zero. However, the effect when we add them in quadrature is significant

and this is what we should consider

∆v2 = |∆v|2 =
(

2Gm
bv

)2

(24)

Consider now the effect of all weak encounters occurring in a time period t. Consider a

spherical system of size R and N stars with a star crossing it with velocity v. The number

14



Figure 6: Cross section of a spherical system of size R crossed by a star at the center,
where b is the impact parameter.

of stars encountered with impact parameters between b and b+db in time t is

dn =
N

4
3πR3

2πb db vt =
3Nb vt db

2R3 (25)

The total squared deflection caused by all the encounters of impact parameters between b

and b+db will be

∆v2 =

(
2Gm
bv

)2(3Nb vt db
2R3

)
(26)

Integrating over b, the total squared deflection in a time t due to all encounters of impact

parameters between bmin and bmax is

∆v2 =
∫ bmax

bmin

(
2Gm

bv

)2(3Nb vt db
2R3

)
⇒ ∆v2 = 6

(
Gm
v

)2(Nvt
R3

)
ln
(

bmax

bmin

)

The relaxation time Trelax is defined as the time taken for the effect of weak encounters to
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become significant i.e. for ∆v2 = v2. Replacing ∆v2 by v2 in the previous equation we get

v2 = 6
(

Gm
v

)2(NvTrelax

R3

)
ln
(

bmax

bmin

)

⇒ Trelax =
1

6N ln
(

bmax
bmin

) (Rv)3

(Gm)2 (27)

Taking bmax = R and bmin = rs, we get

Trelax =
1

6N ln
(

R
rs

) (Rv)3

(Gm)2 (28)

Using this equation, we can estimate the relaxation time for a system of stars, such as a

galaxy.

As an example, consider again a Milky-way like galaxy where the typical velocity of a star

is v= 200 km/s, its mass is m= 2×1030 kg, N = 1010, R= 3×1020 m, and rs = 7×109 m.

Using these values, we get the relaxation time as Trelax ' 1025 s' 1017 yr. This relaxation

time is 107 times the typical age of a galaxy which is ∼ 1010 yr.

So, in addition to the strong encounters, weak encounters are of no significance for galax-

ies. Therefore, galaxies are considered as collisionless systems where collisions encoun-

ters between stars are ignored.

At this point, it is useful to review the three relevant timescales encountered so

far, the orbital timescale, the secular timescale and the relaxation timescale. The orbital

timescale is the timescale on which the star orbits the black hole. It can be determined

through:

vorb =
2πr
torb

⇒ torb =
2πr
vorb

where r is the average orbital radius. vorb can be recovered from the centripetal force

relation Fgrav =
v2

r

⇒ v2

r
=

GM•
r2 ⇒ v =

√
GM•

r
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⇒ torb =
2πr

3
2

GM
1
2•

The secular timescale is the timescale on which orbits precess and evolve. It’s related to

the orbital time through the fact that

tsec

torb
=

M•
Mstars

⇒ tsec =
M•

Mstars
torb

The relaxation time scale is the time taken for the collisions and encounters in the sys-

tem to become significant. For nearly Keplerian systems these three timescales are well

separated:

torb << tsec << trelax

For instance, in the Galactic center and very close to the black hole, torb ∼ 104 yrs, tsec ∼

105 and trelax ∼ 1010 yrs.
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CHAPTER III

MODELING AND FORMULATION

Consider a collisionless cluster of stars surrounding a black hole in a galactic

nucleus. In order to study the dynamical behavior of the stars, we need first to model

the system by specifying the phase space in which the system can be described, then

constructing the distribution functions representing the system and finally formulating the

Hamiltonians governing the dynamics of the system. Before starting, it’s useful to define

here the sphere of influence of a black hole.

A. Sphere of influence

The sphere of influence is a region around a black hole in which the gravitational

potential of the BH dominates the gravitational potential of the surrounding stars. The

radius of this sphere is called the radius of influence rh. One way to determine the radius

of influence is through:

Mstars(r 6 rh)�M•

where M• is the mass of the black hole and Mstars is the mass of the surrounding stellar

system. As an example, consider the nearest normal galactic nuclei; the nucleus of our

galaxy and the nucleus of M31. In the case of our galaxy there is evidence for back hole

of mass ∼ 4× 106 M� [2]. Given the stellar density around the black hole, we find the

radius of influence rh ≈ 1 pc. Within the sphere of influence, the mass of the stellar sys-

tem is ∼ 1.4×106 M� < 1
2M• which is small enough for the black hole to dominate the

dynamics. On the other hand, M31 has a black hole of mass ∼ 1× 108 M� [9]. For a

stellar density ∼ 2500 M� pc−3, rh ∼ 16 pc.
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We can also determine the radius of influence of a black hole through the velocity disper-

sion of the surrounding stellar system. If the velocity dispersion in the stellar system is σ ,

we can say that the black hole has a strong influence on the stellar dynamics if the radius

of influence is given by

rh =
GM•
σ2

For M31 and σ ∼ 166 km/s, we obtain again rh ∼ 16 pc.

By definition, the mass of the stellar system is much smaller than the mass of the black

hole within the radius of influence. In this case, we consider each star as moving under a

dominant gravitational attraction of the black hole plus a relatively small, self-gravity of

the stellar system (i.e. all the other stars). Therefore, we can regard the dynamics in this

region as a perturbation of the two-body problem (Kepler problem). We call such systems

"nearly Keplerian systems".

B. Phase space

Each star in our system is represented by a moving point in the 6-dimensional

phase space, (r,v), where r is its position with respect to the black hole and v is its veloc-

ity. For nearly Keplerian systems, it is useful to use the Delaunay variables as the phase

space variables. The Delaunay variables are action-angle variables for the Kepler problem

and they are more or less equivalent to the orbital elements defined in the previous chapter

[10]

• ω is the mean anomaly, it is related to the position angle θ of the star on the orbit,

ω = n(t−T ), where n = 2π

τ
and T is time at periapsis.

• g is the argument of periapsis measured from the ascending node.

• h is the argument of node measured from the reference direction to the ascending

node.
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• I is the conjugate momentum to the mean anomaly, it is related to the semi-major

axis a, I =
√

GM•a, where M• is the mass of the black hole.

• L is the magnitude of angular momentum vector, it is related to the eccentricity e,

L =
√

GM•a(1− e2).

• Lz is the z-projection of the angular momentum vector, where the z-axis is taken

to be perpendicular to the reference plane, it is related to the inclination i through

Lz =
√

GM•a(1− e2)cos i.

The self gravity of the system is defined as the gravitational attraction upon a star due

to all the other stars. In the absence of the self gravity, the motion of any star would be

purely Keplerian. The star would move on a fixed elliptical orbit where g, h, I, L, and

Lz are all constant and ω advances steadily at a specific orbital frequency. The Delaunay

variables are, by definition, the action-angle variables in this case, which implies that the

Hamiltonian of the system is H = H(I;L;Lz), where ω , g and h are all cyclic. However in

the presence of self gravity, the Delaunay variables, g, h, I, L, and Lz, are not constant any

more. They are slowly varying in time due to the small self gravity within the radius of

influence of BH. In this case, stars move on nearly Keplerian orbits, elliptical orbits that

are slowly evolving in time (changing orientation and shape).

Hence, one can differ between two timescales; the fast orbital timescale at which ω

advances and the slow secular timescale at which g, h, L, Lz and I evolve. When the

timescale, weŠre interested in, is much larger than the orbital timescale, one may average

over the orbital phase and integrate over the corresponding variable ω . Integrating over ω ,

the orbit-averaged Hamiltonian becomes H =H(I;L;Lz;g;h; t) where ω is the only cyclic

variable now. Since H is independent of ω , the conjugate momentum I is a constant of

motion and by definition of I the semi-major axes of orbits are constant in time. The

averaging process predicts that the semi-major axis has no secular evolution. This leads

to a third different timescale of the problem at which the semi-major axis advances. For

consistency, this third time scale should be much slower than the secular one so that we
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can neglect any change in the semi-major axis on the faster secular time scale. Therefore,

Averaging process is valid for any time scale that is much slower than the orbital one and

at the same time much faster than the semi-major axis one.

Hence our phase space can be reduced now to a 4-dimensional phase space, (L,Lz,g,h)

without ω and with I as a parameter defining different populations of stars in the phase

space. Moreover, if the star is restricted to a planar motion, we won’t have the phase-

space variables Lz and h any more (h and g no longer have clear independent meanings).

Hence our phase space becomes 2-dimensional, (g,L) where

• g is the argument of periapsis.

• L is the algebraic magnitude of angular momentum vector, it is related to the eccen-

tricity e and the direction of rotation (prograde or retrograde), L=±
√

GM•a(1− e2).

It’s more convenient to normalize L and deal with l = ±
√

1− e2 such that −1 < l < 1

instead of L =±
√

GM•a(1− e2) [11]. Hence the phase space becomes (g, l), where

• g is the argument of periapsis.

• l is the normalized algebraic magnitude of angular momentum vector, it is re-

lated to the eccentricity e and the direction of rotation (prograde or retrograde),

l =±
√
(1− e2).

The corresponding Hamiltonian of the system becomes Hnew = Hold√
GM•a

. Each point in the

phase space (g, l) represents now a ring with the following properties:

1. All rings are focused at the black hole.

2. All rings are restricted to a plane.

3. We assume for simplicity that every ring has a constant direction of rotation; pro-

grade or retrograde (i.e. a ring cannot switch membership from the prograde to the

retrograde population).
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Figure 7: (l,g) phase space and the real space for two counter-rotating stars.

4. We assume for simplicity that all the prograde rings have the same constant semi-

major axis a+ and all the retrograde rings have the same constant semi-major axis

a−.

5. Every ring has a variable orientation g and variable eccentricity e.

To summarize, the system is composed of two populations of elliptical rings evolving

(i.e. precessing and deforming) in a plan around the black hole. The first population is

prograde and has semi-major axis a+ and the second population is retrograde and has

semi-major axis a−.

C. Distribution Function Concept

To describe the dynamics of a large number of rings in the phase space, it’s more

convenient to represent the rings using a continuous distribution function f (l,g, t) instead

of describing it ring by ring [11]. This is due mainly to two reasons:

1. It’s not practical numerically to follow the dynamics of each ring.
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2. The Hamiltonian governing any ring depends on the dynamics of all the other rings

(due to ring-ring interactions). Thus, we represent all the rings by one distribution

function f and take the Hamiltonian of any ring as a function of f (note that the

distribution function f is self-consistently dependent on the Hamiltonian).

The distribution function f , as defined here, is the mass density of rings in the 2-dimensional

phase space (i.e. the mass of rings with orientation between g and g+dg and with angular

momentum between l and l+dl is f (l,g, t) dldg ). The total mass of the rings is given by

the integration over the whole phase space, M =
∫

f (l,g, t) dldg.

To derive an equation that governs the distribution functions of a collisionless

system in the phase space, we start by the assumption that the number of stars is conserved

in a galactic nucleus. This means ignoring star formation and the death of stars. This

assumption results in a continuity equation of rings in the phase space, which relates the

rate of change of the distribution function with time to the rates of change with position

and velocity.
∂ f
∂ t

+
∂

∂x
( f ẋ)+

∂

∂v
( f v̇) = 0 (29)

Using the product rule, we get

∂ f
∂ t

+ ẋ.
∂ f
∂x

+ f
∂ ẋ
∂x

+ v̇.
∂ f
∂v

+ f
∂ v̇
∂v

= 0 (30)

It is possible, in the case of collisionless systems, to derive an equation from the conti-

nuity equation that more explicitly states the relation between the distribution function f ,

position x, velocity v and time t [8]. In fact, each point in the phase space is moving under

a Hamiltonian dynamics which gives ẋ and v̇ in terms of H

ẋ =
1
m

∂H
∂v

v̇ =− 1
m

∂H
∂x

⇒ ∂ ẋ
∂x

=
1
m

∂

∂x
∂H
∂v

∂ v̇
∂v

=− 1
m

∂

∂v
∂H
∂x
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⇒ f
∂ ẋ
∂x

=− f
∂ v̇
∂v

Therefore, the third and the fifth terms cancel out in the equation and we’re left with the

collisionless Boltzmann equation (CBE)

∂ f
∂ t

+v.
∂ f
∂x
−∇Φ.

∂ f
∂v

= 0 (31)

where we used ẋ = v and v̇ = −∇Φ, Φ is the gravitational potential of the system. The

collisionless Boltzmann equation is the equation that governs the collisionless evolution

of stars in a galactic nucleus. It tells us that d f/dt = 0. This means that the probability

density in phase space, does not change with time for a test particle. The CBE is given in

terms of the gravitational potential Φ. At the same time, the potential Φ of the system is

given self-consistently (by Poisson’s equation) in terms of the DF f . In other words, the

collisionless Boltzmann equation and the Poisson’s equation, together constitute a system

of two equations with two unknowns ( f and Φ):

∂ f
∂ t

+v.
∂ f
∂x
−∇Φ.

∂ f
∂v

= 0

∇Φ(x) = 4πG ρ(x)

where ρ(x) is the mass density at point x, it’s related to the distribution function through

ρ =
∫

f dv.

It is more convenient to take separate distribution functions f+(l,g, t) and f−(l,g, t) for

the prograde and the retrograde populations [11], such that:

∫
f+dldg = M+, mass of all the prograde rings

∫
f−dldg = M−, mass of all the retrograde rings
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and satisfying the collisionless Boltzmann equations:

∂ f+

∂ t
+[ f+,H+] = 0

∂ f−

∂ t
+[ f−,H−] = 0

D. Ring Hamiltonian

In addition to the attraction of the black hole, each ring interacts gravitationally

with every other ring without collisions causing precession and deformation. The secular

evolution (precession and deformation) of any ring is governed by the following Hamil-

tonian:

Prograde ring

H+(l,g, t) = −
∫

dl′dg′ f+(l′,g′, t)

√
G

M•a+
Ψ(a+, l,g;a+, l′,g′)

−
∫

dl′dg′ f−(l′,g′, t)

√
G

M•a+
Ψ(a+, l,g;a−, l′,g′)

Retrograde ring

H−(l,g, t) = −
∫

dl′dg′ f+(l′,g′, t)

√
G

M•a−
Ψ(a−, l,g;a+, l′,g′)

−
∫

dl′dg′ f−(l′,g′, t)

√
G

M•a−
Ψ(a−, l,g;a−, l′,g′)

where:

• Ψ(a+, l,g;a+, l′,g′) is the interaction function between two prograde rings.

• Ψ(a+, l,g;a−, l′,g′) is the interaction function between an unprimed prograde ring

and a primed retrograde ring.
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• Ψ(a−, l,g;a+, l′,g′) is the interaction function between an unprimed retrograde ring

and a primed prograde ring.

• Ψ(a−, l,g;a−, l′,g′) is the interaction function between two retrograde rings.

1. Interaction Function Expansion

In general the interaction function Ψ can be expanded in terms of eee and e′e′e′. It is

given to the fourth order [11] by:

Ψ(a,e,g;a′,e′,g′) =
ρ

2max(a,a′)

(
c1e2 + c2eee.e′e′e′+ c3e′2 + c4e4 + c5e2(eee.eee′)

+c6e2e′2 + c7(eee.e′e
′e′)2 + c8(eee.e′e

′e′)e′2 + c9e′4
)

where ρ =
min(a,a′)
max(a,a′)

eee = (ecosg,esing) e′e′e′ = (e′ cosg′,e′ sing′)

Without loss of generality, let’s assume that a+ > a−, Ψs are then given by [11]:

Ψ(a+,e,g;a+,e′,g′) =

(
1

2a+

)(
c0

20
++e2 + c1

11
++eee.e′e′e′+ c0

40
++e4 + c1

31
++e2(eee.eee′)

+(c0
22

++− c2
22

++)e2e′2 +2c2
22

++(eee.e′e′e′)2 + c1
13

++(eee.e′e′e′)e′2
)

Ψ(a+,e,g;a−,e′,g′) =

(
a−

2a+2

)(
c0

20
+−e2 + c1

11
+−eee.e′e′e′+ c0

40
+−e4 + c1

31
+−e2(eee.eee′)

+(c0
22

+−− c2
22

+−)e2e′2 +2c2
22

+−(eee.e′e′e′)2 + c1
13

+−(eee.e′e′e′)e′2
)

Ψ(a−,e,g;a+,e′,g′) =

(
a−

2a+2

)(
c0

02
+−e2 + c1

11
+−eee.e′e′e′+ c0

04
+−e4 + c1

13
+−e2(eee.eee′)

+(c0
22

+−− c2
22

+−)e2e′2 +2c2
22

+−(eee.e′e′e′)2 + c1
31

+−(eee.e′e′e′)e′2
)

Ψ(a−,e,g;a−,e′,g′) =

(
1

2a−

)(
c0

02
−−e2 + c1

11
−−eee.e′e′e′+ c0

04
−−e4 + c1

13
−−e2(eee.eee′)

+(c0
22
−−− c2

22
−−)e2e′2 +2c2

22
−−(eee.e′e′e′)2 + c1

31
−−(eee.e′e′e′)e′2

)
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Hence we can write:

√
G

M•a+
Ψ(+,+′) = α++e2 +β++eee.e′e′e′+χ++e4 +ν++e2(eee.eee′)

+γ++e2e′2 +λ++(eee.e′e′e′)2 +κ++(eee.e′e′e′)e′2

√
G

M•a+
Ψ(+,−′) =

√
a−
a+

(
αcpe2 +βceee.e′e′e′+χcpe4 +κcpe2(eee.eee′)

+γce2e′2 +λc(eee.e′e′e′)2 +κcm(eee.e′e′e′)e′2
)

√
G

M•a−
Ψ(−,+′) = αcme2 +βceee.e′e′e′+χcme4 +κcme2(eee.eee′)

+γce2e′2 +λc(eee.e′e′e′)2 +κcp(eee.e′e′e′)e′2

√
G

M•a−
Ψ(−,−′) = α−−e2 +β−−eee.e′e′e′+χ−−e4 +ν−−e2(eee.eee′)

+γ−−e2e′2 +λ−−(eee.e′e′e′)2 +κ−−(eee.e′e′e′)e′2

where

α++ =

√
G

M•

(
1

2a+3/2

)
c0

20
++

β++ =

√
G

M•

(
1

2a+3/2

)
c1

11
++

γ++ =

√
G

M•

(
1

2a+3/2

)(
c0

22
++− c2

22
++)

λ++ =

√
G

M•

(
1

a+3/2

)
c2

22
++

κ++ =

√
G

M•

(
1

2a+3/2

)
c1

13
++

χ++ =

√
G

M•

(
1

2a+3/2

)
c0

40
++

ν++ =

√
G

M•

(
1

2a+3/2

)
c1

31
++
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and

αcp =

√
G

M•

(√
a−

2a+2

)
c0

20
+−

αcm =

√
G

M•

(√
a−

2a+2

)
c0

02
+−

κcp =

√
G

M•

(√
a−

2a+2

)
c1

31
+−

κcm =

√
G

M•

(√
a−

2a+2

)
c1

13
+−

βc =

√
G

M•

(√
a−

2a+2

)
c1

11
+−

γc =

√
G

M•

(√
a−

2a+2

)(
c0

22
+−− c2

22
+−)

λc =

√
G

M•

(√
a−

a+2

)
c2

22
+−

χcp =

√
G

M•

(√
a−

2a+2

)
c0

40
+−

χcm =

√
G

M•

(√
a−

2a+2

)
c0

04
+−

and

α−− =

√
G

M•

(
1

2a−3/2

)
c0

02
−−

β−− =

√
G

M•

(
1

2a−3/2

)
c1

11
−−

γ−− =

√
G

M•

(
1

2a−3/2

)(
c0

22
−−− c2

22
−−)

λ−− =

√
G

M•

(
1

a−3/2

)
c2

22
−−

κ−− =

√
G

M•

(
1

2a−3/2

)
c1

31
−−

χ−− =

√
G

M•

(
1

2a−3/2

)
c0

04
−−

ν−− =

√
G

M•

(
1

2a−3/2

)
c1

13
−−

Now, that we have the expressions of the interaction functions Ψs, we can substitute for

them in the Hamiltonians. But before that, we would like to perform a change of variables

to make things simpler: (l,g)→ (x+,y+),(x−,y−), where we have assigned two separate
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phase spaces for the prograde and retrograde populations [11]. The prograde population is

presented in the + phase space and the retrograde population is presented in the − phase

space.

Note that the (l,g) phase space is equivalent to two separate phase spaces; (e+,g+) for

the prograde population and (e−,g−) for the retrograde population, where

e+2 = 1− l2 and g+ = g , for the prograde population.

e−2 = 1− l2 and g− = g , for the retrograde population.

Figure 8: Equivalence of (l,g) phase space with (e+,g+) and (e−,g−) phase spaces.

From now on, we will relate any newly defined phase space to the (e+,g+) and (e−,g−)

phase spaces. This will allow us to interpret any new variable in terms of well-known

physical quantities; the eccentricity e and the orientation g. We transform now from
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(e+,g+), (e−,g−) to (x+,y+), (x−,y−) where

x+2 + y+2 ' e+2

−x+/y+ = tang+

x−2 + y−2 ' e−2

+x−/y− = tang−

Figure 9: Meaning of e+, g+, e− and g− in the (x+,y+) and (x−,y−) phase spaces.

As a result:

f+(l,g, t) → f+(x+,y+, t)

f−(l,g, t) → f−(x−,y−, t)

Ψ(a+, l,g;a+, l′,g′) →Ψ(x+,y+;x′+,y
′
+)

Ψ(a+, l,g;a−, l′,g′) →Ψ(x+,y+;x′−,y
′
−)

Ψ(a−, l,g;a+, l′,g′) →Ψ(x−,y−;x′+,y
′
+)
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Figure 10: A point in the (x+,y+) phase space represents a prograde ring with specific
eccentricity and orientation.

Ψ(a−, l,g;a−, l′,g′) →Ψ(x−,y−;x′−,y
′
−)

H+(l,g, t) → H+(x+,y+, t)

H−(l,g, t) → H−(x−,y−, t)

Figure 11: A point in the (x−,y−) phase space represents a retrograde ring with specific
eccentricity and orientation.
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The Hamiltonians are now given by:

H+(x+,y+, t) = −
∫

dx′+dy′+ f+(x′+,y
′
+, t)

√
G

M•a+
Ψ(x+,y+;x′+,y

′
+)

−
∫

dx′−dy′− f−(x′−,y
′
−, t)

√
G

M•a+
Ψ(x+,y+;x′−,y

′
−)

and

H−(x−,y−, t) = −
∫

dx′+dy′+ f+(x′+,y
′
+, t)

√
G

M•a−
Ψ(x−,y−;x′+,y

′
+)

−
∫

dx′−dy′− f−(x′−,y
′
−, t)

√
G

M•a−
Ψ(x−,y−;x′−,y

′
−)

where

√
G

M•a+
Ψ(+,+′) = (α+++ γ++(x′+

2 + y′+
2)+λ++x′+

2)x+2 +

(α++ + γ++(x′+
2 + y′+

2)+λ++y′+
2)y+2 +

(2λ++x′+y′+)x+y++

(β++x′++(κ++−
β++

8
)x′+(x

′
+

2 + y′+
2))x++

(β++y′++(κ++−
β++

8
)y′+(x

′
+

2 + y′+
2))y++

((ν++−
β++

8
)x′+)x+(x+

2 + y+2)+

((ν++−
β++

8
)y′+)y+(x+

2 + y+2)+

(χ++−
α++

4
)(x+2 + y+2)2
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√
G

M•a+
Ψ(+,−′) =

√
a−
a+

(
(αcp + γc(x′−

2 + y′−
2)+λcx′−

2)x+2 +

(αcp + γc(x′−
2 + y′−

2)+λcy′−
2)y+2−

(2λcx′−y′−)x+y+−

(βcx′−+(κcm−
βc

8
)x′−(x

′
−

2 + y′−
2))x++

(βcy′−+(κcm−
βc

8
)y′−(x

′
−

2 + y′−
2))y+−

((κcp−
βc

8
)x′−)x+(x+

2 + y+2)+

((κcp−
βc

8
)y′−)y+(x+

2 + y+2)+

(χcp−
αcp

4
)(x+2 + y+2)2

)

√
G

M•a−
Ψ(−,+′) = (αcm + γc(x′+

2 + y′+
2)+λcx′+

2)x−2 +

(αcm + γc(x′+
2 + y′+

2)+λcy′+
2)y−2−

(2λcx′+y′+)x−y−−

(βcx′++(κcp−
βc

8
)x′+(x

′
+

2 + y′+
2))x−+

(βcy′++(κcp−
βc

8
)y′+(x

′
+

2 + y′+
2))y−−

((κcm−
βc

8
)x′+)x−(x−

2 + y−2)+

((κcm−
βc

8
)y′+)y−(x−

2 + y−2)+

(χcm−
αcm

4
)(x−2 + y−2)2
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√
G

M•a−
Ψ(−,−′) = (α−−+ γ−−(x′−

2 + y′−
2)+λ−−x′−

2)x−2 +

(α−−+ γ−−(x′−
2 + y′−

2)+λ−−y′−
2)y−2 +

(2λ−−x′−y′−)x−y−+

(β−−x′−+(κ−−−
β−−

8
)x′−(x

′
−

2 + y′−
2))x−+

(β−−y′−+(κ−−−
β−−

8
)y′−(x

′
−

2 + y′−
2))y−+

((ν−−−
β−−

8
)x′−)x−(x−

2 + y−2)+

((ν−−−
β−−

8
)y′−)y−(x−

2 + y−2)+

(χ−−−
α−−

4
)(x−2 + y−2)2

2. Ring Hamiltonian Expansion

In order to find the expressions of the Hamiltonians, we substitute for the Ψs in

the Hamiltonians to get:

Prograde ring

H+(x+,y+, t) =
1
2

A+x2
++B+x+y++

1
2

C+y2
++D+x++E+y+

+F+x+(x2
++ y2

+)+G+y+(x2
++ y2

+)+K+(x2
++ y2

+)
2

Retrograde ring

H−(x−,y−, t) =
1
2

A−x2
−+B−x−y−+

1
2

C−y2
−+D−x−+E−y−

+F−x−(x2
−+ y2

−)+G−y−(x2
−+ y2

−)+K−(x2
−+ y2

−)
2
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where

A+ = −2
∫

dx+dy+ f+(x+,y+, t)
(

α+++(γ+++λ++)x2
++ γ++y2

+

)
−2
√

a−
a+

∫
dx−dy− f−(x−,y−, t)

(
αcp +(γc +λc)x2

−+ γcy2
−

)

B+ = −2λ++

∫
dx+dy+ f+(x+,y+, t) x+y+

+2λc

√
a−
a+

∫
dx−dy− f−(x−,y−, t) x−y−

C+ = −2
∫

dx+dy+ f+(x+,y+, t)
(

α+++ γ++x2
++(γ+++λ++)y2

+

)
−2
√

a−
a+

∫
dx−dy− f−(x−,y−, t)

(
αcp + γcx2

−+(γc +λc)y2
−

)

D+ = −
∫

dx+dy+ f+(x+,y+, t)
(

β++x++(κ++−
β++

8
)x+(x2

++ y2
+)
)

+

√
a−
a+

∫
dx−dy− f−(x−,y−, t)

(
βcx−+(κcm−

βc

8
)x−(x2

−+ y2
−)
)

E+ = −
∫

dx+dy+ f+(x+,y+, t)
(

β++y++(κ++−
β++

8
)y+(x2

++ y2
+)
)

−
√

a−
a+

∫
dx−dy− f−(x−,y−, t)

(
βcy−+(κcm−

βc

8
)y−(x2

−+ y2
−)
)

F+ = −
(

ν++−
β++

8

)∫
dx+dy+ f+(x+,y+, t) x+

+

√
a−
a+

(
κcp−

βc

8

)∫
dx−dy− f−(x−,y−, t) x−

G+ = −
(

ν++−
β++

8

)∫
dx+dy+ f+(x+,y+, t) y+

−
√

a−
a+

(
κcp−

βc

8

)∫
dx−dy− f−(x−,y−, t) y−
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K+ = −
(

χ++−
α++

4

)∫
dx+dy+ f+(x+,y+, t)

−
√

a−
a+

(
χcp−

αcp

4

)∫
dx−dy− f−(x−,y−, t)

and

A− = −2
∫

dx+dy+ f+(x+,y+, t)
(

αcm +(γc +λc)x2
++ γcy2

+

)
−2
∫

dx−dy− f−(x−,y−, t)
(

α−−+(γ−−+λ−−)x2
−+ γ−−y2

−

)

B− = 2λc

∫
dx+dy+ f+(x+,y+, t) x+y+

−2λ−−

∫
dx−dy− f−(x−,y−, t) x−y−

C− = −2
∫

dx+dy+ f+(x+,y+, t)
(

αcm + γcx2
++(γc +λc)y2

+

)
−2
∫

dx−dy− f−(x−,y−, t)
(

α−−+ γ−−x2
−+(γ−−+λ−−)y2

−

)

D− =
∫

dx+dy+ f+(x+,y+, t)
(

βcx++(κcp−
βc

8
)x+(x2

++ y2
+)
)

−
∫

dx−dy− f−(x−,y−, t)
(

β−−x−+(κ−−−
β−−

8
)x−(x2

−+ y2
−)
)

E− = −
∫

dx+dy+ f+(x+,y+, t)
(

βcy++(κcp−
βc

8
)y+(x2

++ y2
+)
)

−
∫

dx−dy− f−(x−,y−, t)
(

β−−y−+(κ−−−
β−−

8
)y−(x2

−+ y2
−)
)

F− =
(

κcm−
βc

8

)∫
dx+dy+ f+(x+,y+, t) x+

−
(

ν−−−
β−−

8

)∫
dx−dy− f−(x−,y−, t) x−
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G− = −
(

κcm−
βc

8

)∫
dx+dy+ f+(x+,y+, t) y+

−
(

ν−−−
β−−

8

)∫
dx−dy− f−(x−,y−, t) y−

K− = −
(

χcm−
αcm

4

)∫
dx+dy+ f+(x+,y+, t)

−
(

χ−−−
α−−

4

)∫
dx−dy− f−(x−,y−, t)

So, H+ and H− are 4th order Hamiltonians given in terms of f+ and f−. Hence, once we

know the distribution functions, we can substitute for them and calculate H+ and H− of

the system.

E. Constructing the distribution function

Consider a collisionless system of stars in a steady state. This means that the

distribution function and the potential (or the Hamiltonian) corresponding to this system

are both explicitly independent of time. On the other hand, we know from the collision-

less Boltzmann equation, df
dt = 0, that the distribution function is constant along the phase

space trajectories. From what preceded, we can infer that star trajectories map out con-

stant values of the distribution function. In other words, the distribution function can be

constructed by taking it as a function of phase space trajectories.

Phase space trajectories can be found through isolating integrals of motion. An integral of

motion is by definition a function of the phase space only (no explicit time dependence)

which is constant along trajectories [12]. Sometimes the integral of motion can isolate

orbits in the phase space. In this case, the integral of motion would be called isolating

integral of motion. If we take the distribution function as a function of an isolating inte-

gral, this distribution function would be a solution of the collisionless Boltzmann equation

governing the system and would constitute the right representation of the system of stars.

In our case, our system is not in a steady state, instead it is evolving slowly in time. There-

37



fore, The distribution function and the Hamiltonian are both function of time. Neverthe-

less, the above discussion can still be applied as an approximate case for small intervals

of time. This allows us to find an approximate time-dependent invariant that does the job

of isolating integrals for small intervals of time. This invariant, in turn, would allow us to

find a time-dependent distribution function for our system.

1. An approximate invariant

To make thing simpler, we prefer to deal with a quadratic Hamiltonian because

it leads to a linear dynamics. First, it’s always possible to get rid of the linear terms by

shifting the origin of the phase space to a new movable origin satisfying certain conditions.

We take the new origin to be (X(t),Y (t)) such that X(t) and Y (t) satisfy the following four

equations:

dX+

dt
= B+X++C+Y++E++2F+X+Y++G+(X2

++3Y 2
+)+4K+(Y 3

++Y+X2
+)

dY+
dt

= −A+X+−B+Y+−D+−F+(3X2
++Y 2

+)−2G+X+Y+−4K+(X3
++X+Y 2

+)

dX−
dt

= B−X−+C−Y−+E−+2F−X−Y−+G−(X2
−+3Y 2

−)+4K−(Y 3
−+Y−X2

−)

dY−
dt

= −A−X−−B−Y−−D−−F−(3X2
−+Y 2

−)−2G−X−Y−−4K−(X3
−+X−Y 2

−)

The change of variables presenting the origin shift is given by

ξ1 = x−X(t)

ξ2 = y−Y (t)

Now our Hamiltonians in the new phase space have no linear terms any more. Second,

suppose that the distribution functions are restricted to a small region around the new

origins. This implies that we are dealing with (x,y) very close to the new origins (X ,Y ),

or equivalently very small ξ . As a result, we can neglect any term in the Hamiltonian
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higher than the quadratic terms. So after the above change of variables and under the

condition of small ξ s, we can consider our Hamiltonian to be quadratic and our dynamics

to be linear.

2. Determining an invariant J for a linear system

Consider a linear system that possesses a quadratic Hamiltonian H(ξ1,ξ2), we

can always write H as

H =
1
2

A ξ1
2 +

1
2

C ξ2
2 +B ξ1ξ2

Hence the linear equations of motion (from Hamilton’s equations) will be given by

ξ̇1 = B ξ1 +C ξ2

ξ̇2 = −A ξ1−B ξ2

Or in a matrix form:

ξ̇ = T ξ

where

ξ =

 ξ1

ξ2

 and T =

 B C

−A −B


Take the function J(ξ1,ξ2) given by

J =
1
2

ξ
T Q ξ

where Q is a 2×2 matrix such that d(detQ)
dt = 0.

dJ
dt

=
1
2

ξ
T
(

T T Q+
dQ
dt

+Q T
)

ξ = 0
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Thus J is an invariant of the motion. It is a function of the phase space (ξ1,ξ2) with its

isocontours are ellipses centered on the origin.

The distribution function should be chosen now to be a function of the approximate in-

variant J. At any instant of time, the isocontours of the distribution function are ellipses

that are centered on (X ,Y ) which can be considered as the coordinates of the centroids of

the distribution function, in the (x,y) phase space. Those isocontours (the ellipses) evolve

in time in the phase space and change shapes and orientations.

Let us finally state precisely the conditions under which this distribution function is an

approximate solution:

1. The dispersions in the eccentricities are much smaller than their centroid values.

(the DFs f+ and f− are delta functions at the centroids)

2. The interval of time, we are dealing with, is relatively small.

F. Final Form of the Ring Hamiltonian

Now that we have the distribution functions as delta functions at the centroids

(X+,Y+) and (X−,Y−), we can do the integrations and recover final expressions of the

coefficients A±,B±,C±,D±,E±,F±,G± and K±. Hence:

Prograde ring

H+(x+,y+, t) =
1
2

A+x+2 +B+x+y++
1
2

C+y+2 +D+x++E+y+

+F+x+(x+2 + y+2)+G+y+(x+2 + y+2)+K+(x+2 + y+2)2

Retrograde ring

H−(x−,y−, t) =
1
2

A−x−2 +B−x−y−+
1
2

C−y−2 +D−x−+E−y−

+F−x−(x−2 + y−2)+G−y−(x−2 + y−2)+K−(x−2 + y−2)2
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where

A+ = −2M+

(
α+++

(
γ+++λ++

)
X+

2 + γ++Y+2
)

−2M−

√
a−
a+

(
αcp +

(
γc +λc

)
X−2 + γcY−2

)

B+ = −2λ++M+X+Y+ + 2λcM−

√
a−
a+

X−Y−

C+ = −2M+

(
α+++ γ++X+

2 +
(
γ+++λ++

)
Y+2
)

−2M−

√
a−
a+

(
αcp + γcX−2 +

(
γc +λc

)
Y−2
)

D+ = −M+

(
β++X++

(
κ++−

β++

8
)
X+(X+

2 +Y+2)
)

+M−

√
a−
a+

(
βcX−+

(
κcm−

βc

8
)
X−(X−2 +Y−2)

)

E+ = −M+

(
β++Y++

(
κ++−

β++

8
)
Y+(X+

2 +Y+2)
)

−M−

√
a−
a+

(
βcY−+

(
κcm−

βc

8
)
Y−(X−2 +Y−2)

)

F+ = −
(

ν++−
β++

8

)
M+X++

√
a−
a+

(
κcp−

βc

8

)
M−X−

G+ = −
(

ν++−
β++

8

)
M+Y+−

√
a−
a+

(
κcp−

βc

8

)
M−Y−

K+ = −
(

χ++−
α++

4

)
M+−

√
a−
a+

(
χcp−

αcp

4

)
M−
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and

A− = −2M+

(
αcm +

(
γc +λc

)
X+

2 + γcY+2
)

−2M−
(

α−−+
(
γ−−+λ−−

)
X−2 + γ−−Y−2

)

B− = 2λcM+X+Y+ − 2λ−−M−X−Y−

C− = −2M+

(
αcm + γcX+

2 +
(
γc +λc

)
Y+2
)

−2M−
(

α−−+ γ−−X−2 +
(
γ−−+λ−−

)
Y−2
)

D− = M+

(
βcX++

(
κcp−

βc

8
)
X+(X+

2 +Y+2)
)

−M−
(

β−−X−+
(
κ−−−

β−−
8
)
X−(X−2 +Y−2)

)

E− = −M+

(
βcY++

(
κcp−

βc

8
)
Y+(X+

2 +Y+2)
)

−M−
(

β−−Y−+
(
κ−−−

β−−
8
)
Y−(X−2 +Y−2)

)

F− =
(

κcm−
βc

8

)
M+X+−

(
ν−−−

β−−
8

)
M−X−

G− = −
(

κcm−
βc

8

)
M+Y+−

(
ν−−−

β−−
8

)
M−Y−

K− = −
(

χcm−
αcm

4

)
M+−

(
χ−−−

α−−
4

)
M−
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CHAPTER IV

CENTROID DYNAMICS

The system we were studying so far consisted of two populations of elliptical

rings evolving in a plane while focused at the same point. The first population is prograde

and has semi-major axis a+ and the second population is retrograde and has semi-major

axis a−.

This system is represented by the distribution functions f+ and f− in the phase spaces

(x+,y+) and (x−,y−) respectively. As shown before, f+ has the centroid (X+,Y+) and

f− has the centroid (X−,Y−). The isocontours of f+ and f− are ellipses centered at their

centroids. As the distribution functions evolve in time, the centroids move and the iso-

contours change shape and orientation.

The whole dynamics of the distribution functions can be described by the matrix Q driving

the shape and orientation of the isocontours and the four equations describing the dynam-

ics of the two centroids [11]. Since the distribution functions in our case were taken to

be delta functions (i.e. the dispersion in eccentricities is much smaller than the centroid

eccentricities), the shape and orientation dynamics is driven by the centroid dynamics and

can be recovered from it. Hence we neglect any dynamics related to the shape or orien-

tation of the distribution functions and focus on the centroid dynamics, the dynamics of

two counter-rotating centroids.

As shown before, centroid dynamics is governed by the four equations:

dX+

dt
= +B+X++C+Y++E++2F+X+Y++G+(X2

++3Y 2
+)+4K+(Y 3

++Y+X2
+)

dY+
dt

= −A+X+−B+Y+−D+−F+(3X2
++Y 2

+)−2G+X+Y+−4K+(X3
++X+Y 2

+)

dX−
dt

= +B−X−+C−Y−+E−+2F−X−Y−+G−(X2
−+3Y 2

−)+4K−(Y 3
−+Y−X2

−)

dY−
dt

= −A−X−−B−Y−−D−−F−(3X2
−+Y 2

−)−2G−X−Y−−4K−(X3
−+X−Y 2

−)
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where the coefficients A±,B±,C±,D±,E±,F±,G±,K± are given in (...). This system of

four equations can be transformed to a two-degree-of-freedom Hamiltonian system by the

following change of variables:

u+ = µ
1
2
+a

1
4
+ X+

v+ = µ
1
2
+a

1
4
+ Y+

u− = µ
1
2
−a

1
4
− X−

v− = µ
1
2
−a

1
4
− Y−

To get a clear sense of the new variables u+, v+, u− and v−, we relate them to the eccen-

tricity ec
+ and the orientation gc

+ of the prograde centroid and the eccentricity ec
− and the

orientation gc
− of the retrograde centroid. (Fig. 12)

u+2 + v+2 = µ+
√

a+ec
+

2

−u+/v+ = tangc
+

u−2 + v−2 = µ−
√

a−ec
−

2

+u−/v− = tangc
−

Figure 12: Meaning of ec
+, gc

+, ec
− and gc

− in the (u+,v+) and (u−,v−) phase spaces of
counter-rotating centroids.
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After substituting for the new variables in the four equations, one can show that

the resulting system is an exact system. Performing the usual method of "partial integra-

tions", we get the following full centroid Hamiltonian:

H = −
(

M+

(
α+++

β++

2

)
+M−

√
a−
a+

αcp

)(
u2
++ v2

+

)
−
(

M−

(
α−−+

β−−
2

)
+M+αcm

)(
u2
−+ v2

−
)

+βc
√

M+M−

(
a−
a+

) 1
4

(u+u−− v+v−)

−

(
M−

√
a−

a+µ+

(
χcp−

αcp

4

)
+

M
√

a+

(
χ++−

α++

4
+

κ++

4
+

3ν++

4
− β++

8
+

γ+++λ++

2

))(
u2
++ v2

+

)2

−

(
M+

1
√

a−µ−

(
χcm−

αcm

4

)
+

M
√

a−

(
χ−−−

α−−
4

+
κ−−

4
+

3ν−−
4
− β−−

8
+

γ−−+λ−−
2

))(
u2
−+ v2

−
)2

− M
√

a+
γc
(
u2
++ v2

+

)(
u2
−+ v2

−
)
− M
√

a+
λc (u+u−− v+v−)

2

+

(
Ma
− 3

4
+ a

1
4
−

√
µ−
µ+

(
κcp−

βc

8

)(
u2
++ v2

+

)
+M (a+a−)

− 1
4

√
µ+

µ−

(
κcm−

βc

8

)(
u2
−+ v2

−
))

(u+u−− v+v−)
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A. Linearized Dynamics of Counter-rotating Centroids

when linearized, the four equations governing the dynamics of centroids become:

du+
dt

= −2
(

M+

(
α++ +

β++

2

)
+M−

√
a−
a+

αcp

)
v+−βc

√
M+M−

(
a−
a+

) 1
4

v−

dv+
dt

= +2
(

M+

(
α++ +

β++

2

)
+M−

√
a−
a+

αcp

)
u+−βc

√
M+M−

(
a−
a+

) 1
4

u−

du−
dt

= −2
(

M−

(
α−−+

β−−
2

)
+M+αcm

)
v−−βc

√
M+M−

(
a−
a+

) 1
4

v+

dv−
dt

= +2
(

M−

(
α−−+

β−−
2

)
+M+αcm

)
u−−βc

√
M+M−

(
a−
a+

) 1
4

u+

The underlying Hamiltonian is given by:

H = −
(

M+

(
α+++

β++

2

)
+M−

√
a−
a+

αcp

)(
u2
++ v2

+

)
−
(

M−

(
α−−+

β−−
2

)
+M+αcm

)(
u2
−+ v2

−
)

+βc
√

M+M−

(
a−
a+

) 1
4

(u+u−− v+v−)

We can study the linear dynamics of centroids by directly studying the four corresponding

linearized equations of motion. These four equations can be written as:

du+
dt

= −ω+v+−ωcv−

dv+
dt

= +ω+u+−ωcu−

du−
dt

= −ω−v−−ωcv+

dv−
dt

= +ω−u−−ωcu+
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where

ω+ = 2
(

M+

(
α+++

β++

2

)
+M−

√
a−
a+

αcp

)
ω− = 2

(
M−

(
α−−+

β−−
2

)
+M+αcm

)
ωc = βc

√
M+M−

(
a−
a+

) 1
4

In the phase space (u+,v+,u−,v−), the point (0,0,0,0) is an equilibrium point that gives

du+
dt

=
dv+
dt

=
du−
dt

=
dv−
dt

= 0

At the level of centroids, this equilibrium point represents a zero-eccentricity equilibrium

where the prograde and the retrograde centroids are circles of radius a+ and a− respec-

tively. In this state, all the prograde stars move on the same circular orbit of radius a+ and

all the retrograde stars move on the same circular orbit of radius a−.

Figure 13: Orbits of prograde and retrograde stars at the zero-eccentricity equilibrium.

To find the nature of the zero-eccentricity equilibrium point, we have to study the behav-

ior of the system around this point by studying the four linearized equations.
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Using the complex notation z+ = u++ iv+ and z− = v−+ iu−, the 4 equations become:

dz+
dt

= +iω+z+−ωcz−

dz−
dt

= −iω−z−−ωcz+

Now take z+ = Z+est and z− = Z−est , we get:

sZ+ = +iω+Z+−ωcZ−

sZ− = −iω−Z−−ωcZ+

Or in a matrix form:

s

 Z+

Z−

=

 iω+ −ωc

−ωc −iω−


 Z+

Z−



=⇒ det

 iω+− s −ωc

−ωc −iω−− s

= 0

=⇒ s2 + i(ω−−ω+)s+ω+ω−−ωc
2 = 0

The roots of this equation are given by

s1 =
−i(ω−−ω+)+

√
4ωc2− (ω++ω−)2

2

s2 =
−i(ω−−ω+)−

√
4ωc2− (ω++ω−)2

2

If s1 or s2 is pure imaginary, the solutions will be periodic around the zero-eccentricity

equilibrium point, which will then be a stable center point. On the other hand, if s1 is

not pure imaginary, then the real part would be positive and growing solutions would be

allowed around the zero-eccentricity equilibrium point which will then be an unstable
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point. Finally, if s2 is not pure imaginary, then its real part would be negative in this case,

and damped solutions would be allowed around the zero-eccentricity equilibrium point

which will then be again an unstable point.

From what preceded, we know that the condition of instability of the zero-eccentricity

equilibrium is given by

4ωc
2− (ω++ω−)

2 > 0

This inequality can be written in terms of ρ , µ and b where ρ = a−/a+ is the semi-major

axis ratio of the retrograde to the prograde orbits, µ = M−/M+ is the mass ratio of the

retro population to the pro population and b is the softening factor where the point-particle

Newtonian potential −GM2

r is replaced by the following softened potential − GM2

(r2+b2)
1
2

.

Softening is usually used to remove the singularity of the 1
r2 force and diminish the effect

of graininess caused by treating the stars as point particles [13]. For too small soften-

ing, the estimated forces will be too noisy while for too large softening, the estimated

forces are misrepresented. There is always an optimal softening that best represents the

true forces in the system. The value of this optimal softening depends on the number of

particles and the mass distribution in the system.

Therefore, ρ , µ and b are the only parameters that control the linear dynamics of cen-

troids. The instability inequality is satisfied when µ is between the two roots of the equa-

tion. In figure 14, we plot the roots of the equation as a function of b for different values

of ρ . The region between the curves (above the blue and below the red) corresponds

to the instability of the zero-eccentricity equilibrium and describes uniformly precessing

centroids of growing or damped eccentricities. On the other hand, the remaining region

of figure 14 corresponds to the stability of the zero-eccentricity equilibrium and describes

uniformly precessing centroids of fixed eccentricities.

The instability of the zero-eccentricity equilibrium operates through interactions between

the prograde and the retrograde populations. For the instability to kick in through pop-

ulation interactions, the mass ratio µ of the prograde and the retrograde populations has

to overcome certain critical values which depends on the softening b. One can also see
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from figure 14 that the instability region depends also on the semi-major axis ratio ρ . For

instance, the instability region gets smaller and smaller when ρ decreases.
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Figure 14: Linear instability regions for the zero-eccentricity equilibrium of
counter-rotating centroids: Plots of µ as a function of b for different values of ρ

To focus more on the effect of the semi-major axis ratio ρ in the linear dynamics,
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we plot in the figure 15 the plane of b and ρ for different values of µ . As shown in the
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Figure 15: Linear instability regions for the zero-eccentricity equilibrium of
counter-rotating centroids: The plane of b and ρ for different values of µ .

figure 15, the instability region is well defined in the plane. For large ρ (nearly equal semi-

major axes), the instability region is wider in terms of the softening b. It gets narrower

with decreasing ρ . The structure and the shape of the regions in the (b,ρ) plane do not

change significantly with changing the mass ratio µ . Instead, they remain similar with a

minor modification in the range of instability at large ρ .
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B. Nonlinear Dynamics of Counter-rotating Centroids

As mentioned before, the full dynamics of counter-rotating centroids is governed

by the four non-linear equations. There is no simple method to solve this system of

equations due to its non-linearity. However, the underlying Hamiltonian, corresponding

to a two-degree-of-freedom system, can tell us much about qualitatively different kinds of

dynamical behavior of the system (equilibrium, stability, instability, etc...) through phase

space analysis. To be able to plot the phase portrait in a two-dimensional plan, we convert

our two-degree-of-freedom Hamiltonian system into a one-degree-of-freedom system by

making use of a conserved quantity of the system. Let us now write the full centroid

Hamiltonian in the following compact form:

H = −ω+

2
(
u2
++ v2

+

)
− ω−

2
(
u2
−+ v2

−
)
+ωc (u+u−− v+v−)

−η+

(
u2
++ v2

+

)2−η−
(
u2
−+ v2

−
)2

− M
√

a+
γc
(
u2
++ v2

+

)(
u2
−+ v2

−
)
− M
√

a+
λc (u+u−− v+v−)

2

+
(
ε+

(
u2
++ v2

+

)
+ ε−

(
u2
−+ v2

−
))

(u+u−− v+v−)
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where

ω+ = 2
(

M+

(
α+++

β++

2

)
+M−

√
a−
a+

αcp

)
ω− = 2

(
M−

(
α−−+

β−−
2

)
+M+αcm

)
ωc = βc

√
M+M−

(
a−
a+

) 1
4

η+ = M−

√
a−

a+µ+

(
χcp−

αcp

4

)
+

M
√

a+

(
χ++−

α++

4
+

κ++

4
+

3ν++

4
− β++

8
+

γ+++λ++

2

)
η− = M+

1
√

a−µ−

(
χcm−

αcm

4

)
+

M
√

a−

(
χ−−−

α−−
4

+
κ−−

4
+

3ν−−
4
− β−−

8
+

γ−−+λ−−
2

)
ε+ = Ma

− 3
4

+ a
1
4
−

√
µ−
µ+

(
κcp−

βc

8

)
ε− = M (a+a−)

− 1
4

√
µ+

µ−

(
κcm−

βc

8

)

We now perform the following change of variables (u+,v+),(u−,v−)→ (ψ+,L+),(ψ−,L−)

where

u+ =
√

2L+ sinψ+ ψ+ = arctan
u+
v+

v+ =
√

2L+ cosψ+ L+ =
u+2 + v+2

2

u− =
√

2L− sinψ− ψ− = arctan
u−
v−

v− =
√

2L− cosψ− L− =
u−2 + v−2

2

Written in terms of (ec
+,g

c
+) and (ec

−,g
c
−), the new variables become

ψ+ =−gc
+ ψ− = gc

−

L+ =
1
2

µ+
√

a+ec
+

2 L− =
1
2

µ−
√

a−ec
−

2
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Written in terms of the new variables ψ+, L+, ψ− and L−, the full centroid Hamiltonian

becomes:

H = −ω+L+−ω−L−−2ωc
√

L+L− cos(ψ++ψ−)

−4η+L2
+−4η−L2

−−4
M
√

a+
γcL+L−

−4
M
√

a+
λcL+L− cos2(ψ++ψ−)

−4(ε+L++ ε−L−)
√

L+L− cos(ψ++ψ−)

We perform now a second change of variables (ψ+,L+),(ψ−,L−) → (V ,L ),(Θ,Σ)

where

ψ+ =
Θ+V

2
V = ψ+−ψ−

L+ = Σ+L L =
L+−L−

2

ψ− =
Θ−V

2
Θ = ψ++ψ−

L− = Σ−L Σ =
L++L−

2

Written in terms of (ec
+,g

c
+) and (ec

−,g
c
−), the new variables become

V = −(gc
++gc

−)

L =
µ+
√

a+
4

ec
+

2−
µ−
√

a−
4

ec
−

2

Θ = gc
−−gc

+

Σ =
µ+
√

a+
4

ec
+

2 +
µ−
√

a−
4

ec
−

2
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Written in terms of the new variables V , L , Θ and Σ, the full centroid Hamiltonian

becomes:

H = −(ω++ω−)Σ− (ω+−ω−)L −2ωc

√
Σ2−L 2 cosΘ

−4(η++η−)Σ
2−4(η++η−)L

2−8(η+−η−)ΣL

−4
M
√

a+
γc(Σ

2−L 2)−4
M
√

a+
λc(Σ

2−L 2)cos2
Θ

−4((ε++ ε−)Σ+(ε+− ε−)L )
√

Σ2−L 2 cosΘ

Note that V is not present in the Hamiltonian and L is a constant of motion. Hence the

Hamiltonian becomes function of only two variables Σ and Θ, where L is considered as a

parameter. We transform now to the Cartesian-type canonical variables, (Θ,Σ)→ (U,V )

where

U =
√

2(Σ−L )sinΘ Θ = arctan
U
V

V =
√

2(Σ−L )cosΘ Σ =
U2 +V 2

2
+L

In order to get sense of the new variables U and V , we relate them to (ec
+,g

c
+) and (ec

−,g
c
−),

the eccentricity and the orientation of the centroids (fig 16).

U2 +V 2 = µ−
√

a−ec
−

2

U/V = tan(gc
−−gc

+)

with

µ+
√

a+ec
+

2 = 4L +µ−
√

a−ec
−

2 = 4L +U2 +V 2
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Figure 16: The meaning of ec
−, gc

+ and gc
− in the (U,V ) phase space for counter-rotating

centroids.

Written in terms of (U,V ), the full one-degree-of-freedom centroid Hamiltonian

becomes:

H = −1
2
(ω++ω−)

(
U2 +V 2)−(η++η−+

M
√

a+
γc

)(
U2 +V 2)2

−4
(

2η++
M
√

a+
γc

)(
U2 +V 2)L − 1

2
ωcV

√
U2 +V 2 +4L

− M
√

a+
λcV 2 (U2 +V 2 +4L

)
−2ω+L −16η+L 2

−1
2
(
(ε++ ε−)

(
U2 +V 2)+4ε+L

)
V
√

U2 +V 2 +4L

Since our system is now a one-degree-of-freedom system, plotting the isocontours of

H is then enough for visualizing the phase portrait of the system. The parameters that

control this phase portrait are (L ,ρ,µ,b). Since H is independent of time, the centroid

Hamiltonian of the system conserves itself. The centroid Hamiltonian also conserves the

quantity L given in terms of ec
+ and ec

− by:

L =
µ+
√

a+
4

ec
+

2−
µ−
√

a−
4

ec
−

2
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From the previous equation, we can see that L represents the difference between the

mass-axis-weighted eccentricity of the prograde centroid and the mass-axis-weighted ec-

centricity of the retrograde centroid up to a scale of 1
4 . In other words, L represents the

difference between the mass-axis-weighted average eccentricity of the prograde rings and

the mass-axis-weighted average eccentricity of the retrograde rings up to 1
4 (at the level

of ring populations). Written in terms of u+, v+, u− and v−, L becomes

L =
u2
++ v2

+

4
−

u2
−+ v2

−
4

Knowing that the total angular momentum of the counter-rotating stars is:

Ltotal = M+

√
GM•a+−M−

√
GM•a−−2M

√
GM•

(
u2
++ v2

+

4
−

u2
−+ v2

−
4

)

one can also interpret L as the deficit in the total angular momentum of the counter-

rotating stars due to orbital eccentricity, up to a scale of (2M
√

GM•). Since M+, M−, a+

and a− are all constant in time, the conservation of L implies the conservation of the

total angular momentum Ltotal of the counter-rotating stars.

Hence, during the evolution of centroids, stars may exchange angular momentum with

each other, but keeping the total angular momentum constant at its initial value. This

angular momentum exchange is the reason of dynamical instability present in the sys-

tem. Actually, a star may give or take angular momentum from another star in the same

population. Moreover, for any increment (or decrement) in the angular momentum of the

prograde population, there must be an increment (or decrement) in the angular momentum

of the retrograde population such that the total angular momentum of the two populations

stays constant.

In what follows, we explore the structure of nonlinear dynamics of counter-

rotating centroids for the two cases of L = 0 and L 6= 0.
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1. Nonlinear dynamics for L = 0

L = 0 means that the mass-axis-weighted eccentricity of the prograde centroid

is equal to the mass-axis-weighted eccentricity of the retrograde centroid. It also means

that the total angular momentum of the counter-rotating stars is at the value corresponding

to circular (non-eccentric) orbits only (i.e. no excess or deficit due to orbital eccentricity).

The L = 0 case includes as a special case the zero-eccentricity where the prograde cen-

troid eccentricity and the retrograde centroid eccentricity are both equal to zero. In order

to explore the effect of the mass ratio µ on the dynamics of counter-rotating centroids,

we follow the structure of the phase portrait as a function of µ at given values of ρ and b,

when L = 0.

Figure 17 shows the isocontours of H in the (U,V) phase space for different val-

ues of µ , when L = 0, ρ = 1 and b = 0.1. In addition to the zero-eccentricity equilibrium

P2 discussed in the linearized dynamics, figure 17 shows two additional equilibria P1 and

P3.

P1 is always stable, it has U = 0 and V < 0 (i.e. gc
−− gc

+ = π) which corresponds to

uniformly precessing eccentric centroids with anti-aligned periapses. With increasing µ ,

P1 remains stable and shifts continuously to lower values of V corresponding to higher

eccentricity.

P2 has U = 0 and V = 0, which corresponds to non-eccentric centroids. It remains stable

till µ = 0.4435 where it becomes unstable by merging with P3 and remains unstable with

further increase in µ . P2 always remains at the same location U = 0 and V = 0.

P3 is always unstable, it has U = 0 and V > 0 (i.e. gc
−−gc

+ = 0) which corresponds to uni-

formly precessing eccentric centroids with aligned periapses. At µ around 0.3, P3 starts

shifting towards P2 till it merges with P2 at U = 0 and V = 0 as mentioned before.

In order to explore the effect of the semi-major-axis ratio ρ on the dynamics of counter-

rotating centroids, we follow the structure of the phase portrait as a function of ρ at given

values of µ and b, when L = 0.
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Figure 18 and 19 show the isocontours of H in the (U,V) phase space for differ-

ent values of ρ , when L = 0, µ = 0.1 and b = 0.1. As we have seen before, for L = 0

and µ = 0.1, the phase space contains three equilibrium points; a stable point P1 at U = 0

and V < 0, a stable point P2 at U = 0 and V = 0 and an unstable point P3 at U = 0 and

V > 0.

P1: with decreasing ρ , P1 remains stable and shifts continuously to lower values of V

corresponding to higher eccentricity, until it approaches ρ = 0.96 where it disappears and

leaves the phase space with only two equilibria, P2 and P3.

P2: with decreasing ρ , P2 remains stable till ρ = 0.9169 where it becomes unstable by

merging with P3. P2 remains unstable till ρ = 0.8988 where it becomes stable again and

remains stable afterwards. P2 doesn’t change location but remains at U = 0 and V = 0 for

all ρ .

P3: with decreasing ρ , P3 remains unstable and shifts continuously to lower eccentricity

towards P2. At ρ = 0.9169 P3 merges with P2 at U = 0 and V = 0 and remains merged till

ρ = 0.8988 where it emerges from P2. During the merging and emerging of P3 and P2, P3

converts from positive to negative values of V corresponding to uniformly precessing ec-

centric centroids switching from aligned to anti-aligned periapses. With further decrease

of ρ , P3 shifts continuously to lower values of V , corresponding to higher eccentricity till

it disappears around 0.55 and leaves the phase space with only one equilibrium point P2.
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Figure 17: Phase portraits of counter-rotating centroids for different values of µ , L = 0,
ρ = 1 and b = 0.1.
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Figure 18: Phase portraits of counter-rotating centroids for different values of ρ , L = 0,
µ = 0.1 and b = 0.1. (Part 1)
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Figure 19: Phase portraits of counter-rotating centroids for different values of ρ , L = 0,
µ = 0.1 and b = 0.1. (Part 2)

2. Nonlinear dynamics for L 6= 0

L 6= 0 means that the prograde and the retrograde centroids have different mass-

axis-weighted eccentricity. It also means that there is an excess or deficit in the total

angular momentum of the counter-rotating stars due to orbital eccentricity.

In order to explore the effect of L on the dynamics of counter-rotating centroids, we

follow the structure of the phase portrait as a function of L at given values of µ and b,

when ρ = 1.
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Figure 20 shows the isocontours of H in the (U,V) phase space for different val-

ues of L , when ρ = 1, µ = 0.1 and b = 0.1. As we have seen, for L = 0 and µ = 0.1,

the phase space contains three equilibrium points; a stable point P1 at U = 0 and V < 0, a

stable point P2 at U = 0 and V = 0 and an unstable point P3 at U = 0 and V > 0.

P1: with increasing L , P1 remains stable and shifts continuously to higher values of V

till it converts from negative to positive V at L = 0.0031. This conversion corresponds

to uniformly precessing eccentric centroids switching from anti-aligned to aligned peri-

apses. With further increase in L , P1 remains stable until L = 0.0434 where it becomes

unstable and gives presence to two off-axis stable equilibria corresponding to non-aligned

uniformly precessing eccentric centroids. With further increase in L , P1 shifts continu-

ously to higher values of V corresponding to higher eccentricity.

P2: with increasing L , P2 remains stable and shifts continuously to higher values of V

corresponding to higher eccentricity till it hits L = 0.0272 where it disappears by merg-

ing with P3.

P3: with increasing L , P3 remains unstable and shifts continuously to higher values of V

corresponding to higher eccentricity till it hits L = 0.0272 where it disappears by merg-

ing with P2 as mentioned before.

In order to explore the effect of the semi-major-axis ratio ρ on the dynamics of counter-

rotating eccentric centroids, we follow the structure of the phase portrait as a function of

ρ at given values of µ and b, when L = 0.1.

Figure 21 and 22 show the isocontours of H in the (U,V) phase space for differ-

ent values of ρ , when L = 0.1, µ = 0.1 and b = 0.1. As seen before, for L = 0.1 and

ρ = 1, the phase space of the counter-rotating centroids contains three equilibrium points;

two off-axis stable points P4 and P5 at U 6= 0 and V > 0 and one unstable point P2 at U = 0

and V > 0.

With decreasing ρ , P4 and P5 remain stable and shift to lower eccentricity towards P2, un-

til ρ = 0.99996 where they merge with P2 and transform it to a stable point at U = 0 and

V > 0 corresponding to uniformly precessing eccentric centroids with aligned periapses.
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With further decrease in ρ , P2 remains stable and shifts to lower eccentricity till ρ = 0.962

where it arrives at U = 0 and V = 0 and remains there afterwards.

With further decrease in ρ , an unstable point takes place at U = 0 and V < 0 and starts

shifting towards P2 till ρ = 0.952 where it merges with P2 and make the stable equilibrium

at U = 0 and V = 0 disappear leaving the phase space with no equilibrium points.

Afterwards, the phase space remains without equilibria till ρ = 0.8 where two new equi-

librium points emerge at U = 0 and V < 0. The first equilibrium P6 always remains stable

and shifts continuously to higher values of V , till it arrives at U = 0 and V = 0 and remains

their afterwards. The second equilibrium P7 remains unstable and shifts continuously to

lower values of V , till ρ = 0.5 where a new stable equilibrium P8 takes place at U = 0 and

V8 <V7
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Figure 20: Phase portraits of counter-rotating centroids for different values of L , ρ = 1,
µ = 0.1 and b = 0.1.
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Figure 21: Phase portraits of counter-rotating centroids for different values of ρ ,
L = 0.1, µ = 0.1 and b = 0.1. (Part 1)
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Figure 22: Phase portraits of counter-rotating centroids for different values of ρ ,
L = 0.1, µ = 0.1 and b = 0.1. (Part 2)
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C. Nonlinear Dynamics of co-rotating centroids

To appreciate the effects of counter rotation and the corresponding phase space

which is full of bifurcations, we explore the contrast case of co-rotating centroids. The

corresponding full (nonlinear) Hamiltonian is given by

H = −
(

M+

(
α+++

β++

2

)
+M−

√
a−
a+

αcp

)(
u2
++ v2

+

)
−
(

M−

(
α−−+

β−−
2

)
+M+αcm

)(
u2
−+ v2

−
)

−βc
√

M+M−

(
a−
a+

) 1
4

(u+u−+ v+v−)

−

(
M−

√
a−

a+µ+

(
χcp−

αcp

4

)
+

M
√

a+

(
χ++−

α++

4
+

κ++

4
+

3ν++

4
− β++

8
+

γ+++λ++

2

))(
u2
++ v2

+

)2

−

(
M+

1
√

a−µ−

(
χcm−

αcm

4

)
+

M
√

a−

(
χ−−−

α−−
4

+
κ−−

4
+

3ν−−
4
− β−−

8
+

γ−−+λ−−
2

))(
u2
−+ v2

−
)2

− M
√

a+
γc
(
u2
++ v2

+

)(
u2
−+ v2

−
)
− M
√

a+
λc (u+u−+ v+v−)

2

−

(
Ma
− 3

4
+ a

1
4
−

√
µ−
µ+

(
κcp−

βc

8

)(
u2
++ v2

+

)
+M (a+a−)

− 1
4

√
µ+

µ−

(
κcm−

βc

8

)(
u2
−+ v2

−
))

(u+u−+ v+v−)

where the + and − sub-indices both refer to prograde populations with different semi-

major axes a+ and a−, respectively. As mentioned before, the centroid Hamiltonian can

tell us much about qualitatively different kinds of dynamical behavior of the system (equi-

librium, stability, instability, etc...) through phase space analysis. To be able to plot the

phase portrait in a two-dimensional plan, we convert our two-degree-of-freedom Hamilto-

nian system into a one-degree-of-freedom system by making use of a conserved quantity

of the system. Let us now write the full centroid Hamiltonian in the following compact
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form:

H = −ω+

2
(
u2
++ v2

+

)
− ω−

2
(
u2
−+ v2

−
)
+ωc (u+u−− v+v−)

−η+

(
u2
++ v2

+

)2−η−
(
u2
−+ v2

−
)2

− M
√

a+
γc
(
u2
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+

)(
u2
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−
)
− M
√

a+
λc (u+u−− v+v−)

2

+
(
ε+

(
u2
++ v2

+

)
+ ε−

(
u2
−+ v2

−
))

(u+u−− v+v−)

where

ω+ = 2
(

M+

(
α+++

β++

2

)
+M−

√
a−
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αcp

)
ω− = 2
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M−

(
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)
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ωc = βc

√
M+M−

(
a−
a+

) 1
4

η+ = M−

√
a−

a+µ+

(
χcp−

αcp

4

)
+
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+

κ++

4
+
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+

γ+++λ++

2

)
η− = M+
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+
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(
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−
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)
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We now perform the following change of variables (u+,v+),(u−,v−)→ (ψ+,L+),(ψ−,L−)

where

u+ =
√

2L+ sinψ+ ψ+ = arctan
u+
v+

v+ =
√

2L+ cosψ+ L+ =
u+2 + v+2

2

u− =
√

2L− sinψ− ψ− = arctan
u−
v−

v− =
√

2L− cosψ− L− =
u−2 + v−2

2

Written in terms of (ec
+,g

c
+) and (ec

−,g
c
−), the new variables are

ψ+ =−gc
+ ψ− = gc

−

L+ =
1
2

µ+
√

a+ec
+

2 L− =
1
2

µ−
√

a−ec
−

2

Written in terms of the new variables ψ+, L+, ψ− and L−, the full centroid Hamiltonian

becomes:

H = −ω+L+−ω−L−+2ωc
√

L+L− cos(ψ+−ψ−)

−4η+L2
+−4η−L2

−−4
M
√

a+
γcL+L−

−4
M
√

a+
λcL+L− cos2(ψ+−ψ−)

+4(ε+L++ ε−L−)
√

L+L− cos(ψ+−ψ−)
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We perform now a second change of variables (ψ+,L+),(ψ−,L−) → (V ,Σ),(Θ,L )

where

ψ+ =
Θ+V

2
V = ψ+−ψ−

L+ = L +Σ Σ =
L+−L−

2

ψ− =
Θ−V

2
Θ = ψ++ψ−

L− = L −Σ L =
L++L−

2

Written in terms of (ec
+,g

c
+) and (ec

−,g
c
−), the new variables are

V = −(gc
++gc

−)

Σ =
µ+
√

a+
4

ec
+

2−
µ−
√

a−
4

ec
−

2

Θ = gc
−−gc

+

L =
µ+
√

a+
4

ec
+

2 +
µ−
√

a−
4

ec
−

2

Written in terms of the new variables V , Σ, Θ and L , the full centroid Hamiltonian

becomes:

H = −(ω++ω−)L − (ω+−ω−)Σ+2ωc

√
L 2−Σ2 cosV

−4(η++η−)L
2−4(η++η−)Σ

2−8(η+−η−)L Σ

−4
M
√

a+
γc(L

2−Σ
2)−4

M
√

a+
λc(L

2−Σ
2)cos2 V

+4((ε++ ε−)L +(ε+− ε−)Σ)
√

L 2−Σ2 cosV

Note that Θ is not present in the Hamiltonian and L is a constant of motion. Hence the

Hamiltonian becomes function of only two variables V and Σ, where L is considered as a

parameter. We transform now to the Cartesian-type canonical variables, (V ,Σ)→ (U,V )
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where

U =
√

2(L −Σ)cosV V = arctan
V
U

V =
√

2(L −Σ)sinV Σ = L −U2 +V 2

2

In order to get sense of the new variables U and V , we relate them to (ec
+,g

c
+) and (ec

−,g
c
−),

the eccentricity and the orientation of the centroids. (Fig. 23)

U2 +V 2 = µ−
√

a−ec
−

2

V/U = tan(−(gc
++gc

−))

with

µ+
√

a+ec
+

2 = 4L −µ−
√

a−ec
−

2 = 4L −
(
U2 +V 2)

Figure 23: The meaning of ec
−, gc

+ and gc
− in the (U,V ) phase space for co-rotating

centroids.

Written in terms of (U,V ), the full one-degree-of-freedom centroid Hamiltonian
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becomes:

H =
1
2
(ω+−ω−)

(
U2 +V 2)−(η++η−−

M
√

a+
γc

)(
U2 +V 2)2

−4
(

M
√

a+
γc−2η+

)(
U2 +V 2)L +ωcU

√
4L − (U2 +V 2)

− M
√

a+
λcU2 (4L −

(
U2 +V 2))−2ω+L −16η+L 2

+
(
4ε+L − (ε+− ε−)

(
U2 +V 2))U

√
4L − (U2 +V 2)

In order to visualize the phase portrait of the co-rotating centroids, we plot the isocontours

of H in the (U,V ) plane. Since H is independent of time, the centroid Hamiltonian of the

system conserves itself. The centroid Hamiltonian also conserves the quantity L given

in terms of ec
+ and ec

− by:

L =
µ+
√

a+
4

ec
+

2 +
µ−
√

a−
4

ec
−

2

From the previous equation, we can see that L represents the sum of the mass-axis-

weighted eccentricity of the two centroids up to a scale of 1
4 .

Written in terms of u+, v+, u− and v−, L becomes

L =
u2
++ v2

+

4
+

u2
−+ v2

−
4

Knowing that the total angular momentum of the prograde-prograde system of stars is:

Ltotal = M+

√
GM•a++M−

√
GM•a−−2M

√
GM•

(
u2
++ v2

+

4
+

u2
−+ v2

−
4

)

one can also interpret L as the deficit in the total angular momentum of all the stars due

to orbital eccentricity, up to a scale of (2M
√

GM•). Since M+, M−, a+ and a− are all

constant in time, the conservation of L implies the conservation of the total angular mo-

mentum Ltotal of the stars.
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Hence, during the evolution of centroids, stars may exchange angular momentum with

each other, but keeping the total angular momentum constant at its initial value. A star

may give or take angular momentum from another star in any population. Moreover, for

any increment (or decrement) in the angular momentum of the first population, there must

be a decrement (or increment) in the angular momentum of the second population and vise

versa, such that the total angular momentum of the two populations stays constant.

For L = 0, the eccentricity of the first and the second centroids should both be equal to

zero. In this case, the phase portrait of the co-rotating centroids reduces to one point at

U = 0 and V = 0 (zero-eccentricity point).

For L 6= 0, the phase portrait is much richer than the zero case, however it is still bounded

to certain region depending on L . In this case, the eccentricity of the centroids cannot

exceed certain values depending on the value of L . In what follows, we explore the

structure of nonlinear dynamics of co-rotating centroids for L = 1.

L = 1 means that the mass-axis-weighted eccentricity of the first centroid and the mass-

axis-weighted eccentricity of the second centroid should add up to one. It also means that

there is a deficit of 2M
√

GM• in the total angular momentum of the co-rotating stars due

to orbital eccentricity.

Figure 24 shows the isocontours of H in the (U,V) phase space when L = 1, ρ = 1,

µ = 0.1 and b = 0.1.

The phase space shown in figure 24, contains six equilibrium points:

P1 is stable , it has U < 0 and V = 0 (i.e. gc
++gc

− =−π) which corresponds to uniformly

precessing eccentric co-rotating centroids with non-aligned periapses in general.

P2 is stable, it has U > 0 and V < 0.

P3 is stable, it has U > 0 and V > 0.

U > 0 and V ≶ 0 corresponds to uniformly precessing eccentric co-rotating centroids with

nonaligned periapses in general.

P4 and P5 are both unstable with U > 0 and V = 0.

P6 is stable, it has U > 0 and V = 0.
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Figure 24: Phase portraits of co-rotating centroids for µ = 0.1, when L = 1, ρ = 1 and
b = 0.1.

U > 0 and V = 0 implies gc
++gc

− = 0 which corresponds to uniformly precessing eccen-

tric co-rotating centroids with symmetric periapses about the reference axis.

To see the effect of the mass ratio µ on the structure of the phase space, we plot the phase

portrait of the system for two additional values of µ .

Figure 25 and Figure 26 show the isocontours of H in the (U,V) phase space for two dif-

ferent values of µ , µ = 0.25 and µ = 0.7, when L = 1, ρ = 1 and b = 0.1.

The structure of the phase space of the co-rotating centroids doesn’t change with changing

µ . There is no any bifurcation in this case. For instance, with increasing µ , P1 remains

stable and shifts continuously to lower eccentricity. P2 and P3 also remain stable and shift

continuously away from the U axis to higher eccentricity. P4, P5 and P6, all shift to higher
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Figure 25: Phase portraits of co-rotating centroids for µ = 0.25, when L = 1, ρ = 1 and
b = 0.1.

eccentricity without changing nature (stable or unstable).
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Figure 26: Phase portraits of co-rotating centroids for µ = 0.7, when L = 1, ρ = 1 and
b = 0.1.
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CHAPTER V

SUMMARY AND CONCLUSIONS

In this report, we formulated the self-consistent problem of a collisionless cluster

of stars around a massive black hole. The stars were assumed to move on nearly Keple-

rian orbits around the black hole due to the dominance of the black hole within its radius

of influence. As we were not interested in the fast orbital phase, we averaged over it and

we focused our work on the study of the secular evolution of the resulting massive rings.

In addition, the orbit averaging results in the conservation of the semi-major axis of each

ring and leads to a four dimensional phase space instead of six. For instance, we were

left with the four Delaunay variables describing individual rings: (1) the magnitude of the

angular momentum, (2) the z-projection of the angular momentum, (3) the argument of

the periapsis and (4) the argument of the ascending node. Allowing for counter rotation

between stars, we divided our rings into two populations, prograde and retrograde. Hav-

ing the self-consistency and the absence of collisions in the problem, we represented the

two populations of rings by two separate distribution functions (DFs), prograde and ret-

rograde, which satisfy two separate collionsless Boltzmann equations (CBEs) governing

the slow dynamics of the system. The two distribution functions depend self-consistently

on two separate Hamiltonians (ring Hamiltonians), the orbit-averaged gravitational poten-

tial energy between the stars. On the other hand, each ring Hamiltonian depends on the

two distribution functions since the two populations of rings are gravitationally coupled

together. Restricting our problem to populations of rings of small eccentricities, we then

expanded the ring Hamiltonians to fourth order in the eccentricities (with coefficients that

depend on both the prograde and the retrograde DFs). The Hamiltonian expansion was

taken from a previous work by Touma and Sridhar [11]. We transformed then to new

canonical variables suitable to such restriction. Using Jeans’ theorem, we constructed
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then our time-dependent DFs by taking them to be some physically allowed functions of

an approximate invariant of the Hamiltonians. The resulting DFs turned out to be such

that their isocontours are ellipses centered at moving origins. Those moving origins, re-

ferred to as the centroids, satisfy four equations. In the limit where the dispersion in

the eccentricities were smaller than the centroid eccentricities, the slow dynamics of the

counter-rotating disks was well described by the independent dynamics of the two cen-

troids with no necessity for studying the shape dynamics of the DFs. The four centroid

equations are four autonomous first order nonlinear ODEs. They constituted an integrable

system. For instance, we showed that these four equations can be derived from an under-

lying Hamiltonian corresponding to a two-degree-of-freedom system. This system turned

out to be integrable due to the presence of two conserved quantities, the Hamiltonina

itself, and another quantity corresponding to the total angular momentum of the two pop-

ulations. The work done to this point is a generalization of a previous work by Touma

and Sridhar [11]. Here, we assigned different semi-major axes for different populations

where the retrograde population were assumed to have the smaller one.

Studying the centroid dynamics linearly was a straightforward task by solving the lin-

earized four centroid equations. However in the nonlinear case, the centroid Hamiltonian

constituted a helpful way to explore the dynamics of the system where solving the four

nonlinear centroid equations were an uneasy task.

We started by studying the linear dynamics of the system where we identified an equilib-

rium point at the origin corresponding to two populations of circular orbits. We studied

then the linear stability of this zero-eccentricity equilibrium based on the three parameters

controlling the linear dynamics (the semi-major axis ratio ρ , the mass ratio µ and the soft-

ening b). In fact, we followed the instability region of the zero-eccentricity equilibrium in

the (b,µ) plane for different semi-major axis ratio. For a given semi-major axis ratio and

softening, there were critical values of the mass ratio where the zero-eccentricity equilib-

rium was unstable. This instability corresponds to uniformly precessing disks of growing

or damped eccentricities whereas the stability of the system corresponds to uniformly
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precessing disks of fixed centroid eccentricities. In order to explore the effect of ρ in a

more accurate way, we followed the instability region of the zero-eccentricity equilibrium

in the (b,ρ) plane for different values of µ . The plane was divided into two well defined

regions corresponding to the stability and the instability. In general, the instability region

was wider for large ρ corresponding to nearly equal semi-major axes and got narrower

with decreasing ρ . Hence, we concluded that the instability of the zero-eccentricity equi-

librium is more probable for large values of ρ .

We moved next to the nonlinear dynamics. In order to be able to plot the phase portrait

of the system in a two dimensional plane, we reduced the dynamics to a one-degree-of-

freedom system by making use of some canonical transformations and the conservation

of the total angular momentum. The results of the nonlinear study can be summarized as

follows:

We started with L = 0 corresponding to stellar disks of total angular momentum equal

to that of stars with circular orbits. First, we followed the phase space structure of zero-

L disks as a function of their mass ratio, when their semi-major axes were equal and

their softening was relatively small (b = 0.1). We noticed that, in addition to the zero-

eccentricity equilibrium shown in the linear dynamics, the nonlinear dynamics of the

system contains two additional equilibria. The first corresponds to uniformly precessing

eccentric disks with anti-aligned periapses and remains stable for any mass ratio. The

second corresponds to uniformly precessing eccentric disks with aligned periapses and

remains unstable for all mass ratios.

We second followed the phase space structure of zero-L disks as a function of their semi-

major axis ratio, when µ = 0.1 and b = 0.1. Same as before, the phase space initially (at

ρ = 1) contained three equilibrium points. The first corresponds to uniformly precessing

eccentric disks with anti-aligned periapses. It remains stable for all ρ below 0.961 and

disappears afterwards. The second corresponds to non-eccentric disks. It remains stable

till ρ = 0.9169 where it becomes unstable and stays until ρ = 0.8988. At ρ = 0.8988 it

becomes stable again and remains stable afterwards. The third corresponds to uniformly
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precessing eccentric disks with aligned periapses. It remains unstable for all values of ρ .

However, it converts from aligned to anti-aligned periapses at ρ = 0.8988 and shifts to

higher eccentricities till it disappears around ρ = 0.55.

For L 6= 0 the dynamics of the system was so different. First, we followed the phase

space structure as a function of L , when their semi-major axes were equal, their mass

ratio was 0.1 and their softening was relatively small (b = 0.1). The phase space ini-

tially (at L = 0) contained three equilibrium points. The first corresponds to uniformly

precessing eccentric disks with anti-aligned periapses. It starts initially stable and shifts

continuously to lower eccentricities till it switches from anti-aligned to aligned periapses

at L = 0.0031. It remains stable until L = 0.0434 where it becomes unstable and gives

presence to two off-axis stable equilibria corresponding to non-aligned uniformly pre-

cessing eccentric centroids. The second corresponds to non-eccentric disks. It remains

stable and shifts continuously to higher eccentricity till it hits L = 0.0272 and disappears.

The third corresponds to uniformly precessing eccentric disks with aligned periapses. It

remains unstable and shifts continuously to higher eccentricity till it hits L = 0.0272 and

disappears.

We second followed the phase space structure of nonzero-L disks as a function of their

semi-major axis ratio, when L = 0.1, µ = 0.1 and b = 0.1. The phase space initially

(at ρ = 1) contained three equilibrium points; two off-axis stable points and one unstable

point. With decreasing ρ , the two off-axis stable points disappear by merging with the

third unstable point into a stable point corresponding to uniformly precessing eccentric

disks with aligned periapses. The new stable point remains stable till ρ = 0.962 where it

merges with a new-born unstable point and both disappear. Afterwards, the phase space

remains without equilibria till ρ = 0.8 where two new equilibrium points emerge. The

first corresponds to uniformly precessing eccentric disks with aligned periapses and re-

mains stable afterwards. The second corresponds to uniformly precessing eccentric disks

with anti-aligned periapses and remains unstable afterwards. At ρ = 0.5 a new stable

equilibrium takes place corresponding to uniformly precessing disks with anti-aligned
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periapses.

A possible generalization is to allow for a range of different semi-major axes in each

population of stars. In this case, the problem of two centroids becomes a multicentroid

problem and provide an independent confirmation to the results found in the simpler prob-

lem, the presence of various uniformly precessing eccentric discs of different properties

and nature which depend on several parameters like the angular momentum, the semi-

major axis ratio and the mass ratio. Another generalization is to study the dynamics of

three-dimensional cluster instead of planar cluster, where a third degree of freedom (in-

clination) would be added. In this case, the ring Hamiltonian would be expanded in terms

of the inclination in addition to the eccentricity and the orientation. Although this would

results in a little bit more complication at the level of inerrability, the three-dimensional

generalization may provide a confirmation of the current results. Finally, as a third pos-

sible generalization, we could allow for different physically allowed DFs other than the

delta functions at the centroids and study their shape dynamics in a direct way. These

generalizations provide a larger framework to study the problem of stellar cluster around

a black hole and lead to new features and properties of the dynamics.
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