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Summary

The principal result of this thesis is the derivation
of a new set of generators for the symmetric group Sm on m sym-—

bols. For each m>2 , when m = 2 (mod 4) the permutations

(1, E-E.g )l » (1, % )n , and ( 1, “Ta )m » defined in part.s.

of this paper , generate Sm . Then when m = 3 (mod 4 ) the per-
mutations { 1, !El )m , {1, E%l )n , and ( 1, !%2 )m generate

S, - Analogous results can be obtained for m = 0,1 (mod 4).

{¥)




1.A Note on the Genesis of the Permutation Idea

A friend posed the following problem. Given thirteen
cards he asked me to arrange the cards in such a way that
having finished the arrangement, the following process, say
W,applied to the arranged set will yield successively the
cards numbered with 1,2,3,...,13 (the cards are numbered froam
1 40 13 } in that order. The process W is the following:
Starting with the set of thirteen cards (face not shown) the
topmost card is placed at the bottom then the next card is
exposed and put aside. The process is repeated until all the
carde are shown, and these must appear in the order 1,2,3%,...13.

My ideas on the topic had their start from this simplse
problem.{ The reader should refer to part ? before reading the next para)

We observe that the permutation (1,1)13 can give the
solution to the above mentioned problem as shown below.
Arranging the permutation rows vertically we have,

1 1 where the left column is transformed into the

§ 1; right column (thus t is transformed into 7,2 into
4 2 {1 etc.) The right column gives the arrangement of
g g the thirteen cards that one has to start with in

7 Mt order to get the required sequence 1,2,3,...,13,

g g after the process W is appbied to the set of cards.
10 5

i1 13

12 6

13 10



2. Notes On The Symmetric Group

A permutation of a finite set S of symbols is a one-
one mapping of S onto itself. For example, if 8 = {1,2,3,4,5},
then, the mapping A on S such that A(1) = 3, A(2) = 5, A{3) = 2,
A(4) = 1, and A(5) = 4,is a permutation. It is convenient to
write A =(; g g ? 2) to express the fact that the image of
1 under A is 3, etc.

If L is a permutation ¢of 3 such that for some subset
{ By18y10038 } of 8, L(s,) = 8,40 (1 =1,2,...,k=1 ) and
L(ak) = 8,, while the image of each remaining element of 38 is
iteelf, then I is called a k-cycle,and we write, L=( 81,52,...,skL

The product AB of permutations A and B is defined as

the permutation obtained by first carrying out A then B. For

emmte, (32212 (332D G143

A Tesult of the elementary theory of permutations is
that any permutation can be expressed uniquely apart from
order as the product of mutually disjoint cycles. For eg.

(32743 =130 (2540

The set of all permutations on m symbols form & group
under multiplication. This group is called the gymmetric group
of degree m and is denoted by Bm.

Theoren 1. Any member of Sm can be expressed as a product
of cycles from the set { (1,2), (2,3)se¢., {(m=1,m} }.

As every permutation can be expressed as & product of
cycles,it suffices to prove that each cycle can be expressed
as stated in the theorem. Thus,consider ( Py,PoreeesPy ),rg m.

We observe that ( pi,pyye-sp, ) = (Pyspy) (PysPglece (pyapp).
The proof is completed by showing that any cycle (h,s),



where hgm and sym can be expressed as a product of cycles

from the set { (1,2), (2,3)y+.0, (m~1,m) }. First we prove

that all cycles (1,n) can be expressed in this way. We have,

(1,2)

(133) = (132) (233) (1:2)

(1,4) = (1,3) (3,4) (1,3) , and in general,

(1,m) = (1,n~1) (n~-1,n) (1,n-1). Now, having (1,h) and (1,8),

we can get (h,s) in the desired form as (h,s) = (1,h) (1,8) (1,h).
The above result can be stated thus: The set of permutations

{ (1,2), (2,3)ye0., (m=1,m) } gonerate the symmetric group of

order m.
The reader is referred to the book Introduction to

the $heory of Finite Groups by walter Ledermann for a fuller
ireataent of the ideas present#d above.



2. The Permutation (1,n)ll

Definition of (1,n).

Dencte by P the set of positive integers and let Pr
denote the subset{1,2,...,r} of P. For each positive integer
n we shall define an operation X on the collection of ordered
t-tuples of elements of §? for t = 1,2,.... The role of this
operation is to facilitate the definition of certain permuta-
tions. '

For an ordered t-tuple D, = (11’12"“’it) vwe define
XD, = D, = (in+2""'it’i1)' Thus X shifts the first member of
D, to the last position and then the set 8y = (12,13,...,111“)
of n elements is discarded from the new t-tuple formed.
Applying X,in turn, to D1 gives ID1 = D2 = ‘12n+3""’it’11’1n+2)
with S, = (in+3’in+4”"’12n+2)’ another set of n elements dis-
carded as before. This process is continued, thus obtaining
successively D3, Dioyenes

Now the following possibilities are considered:
(a) nlt. Let n.d=t.
We observe that Do has t elements, D1 has t-n elements, and in
general Dr has t-n.r elements. ThenPd has t-d.n=0 elements.
So Dy = g .
(b) nft. Let t=n.k+s, O<sda.
Reasoning as above Dl has 8 elements.To obtain Dk+1 we apply
X on D, and then drop a sel of & elements S, (in this case,
as there are less than n elements left all of them are dropped)
S0 D 4 = d .

Now we define the permutations (1,n)m of P as follows:
Starting with D, = (1,24.0.,m),we apply X to D, etc., obtaining
successively D,, Dz,...,ﬂ with the corresponding sets 31,32,...,¢.



We then map the n elements of 81 on 1,2,...,n in the order
with which they occur in S,. Thus the mapped elements of CH
give (1 g ::: §+f). S, is mapped similarly on the next block
of n integers in Poy etc. Now if nfm, then some §i will be
reached which has less than n elementis (If m=n.k+s then S1
will have & elemenis as in (b) above). This block of a inte-
gers is mapped on the remaining block of s integers in P‘.
The above mappings of the 85's on segments of P‘ define the
permutation (1,n)n.

As & numerical example consider (1,4)10. Starting with
b, = (1,24.40410) , we apply X to D i.e. we shift 1 to a position
after 10 and then drop the first 4 integers of the new 10-tuple.
= (6,7,8,9,10) with 31 = (2,3%,4,5), then

1
2 = (1 6) with 82 = (7’8’9’10)! and
Mapping 81,8 and S on P10 = (1,2,..+,10) we obtain
(2 789106 f
1

3457 )
23456789 10
ch is the 10-cycle (1,10,8,6,9,7,5,4,3,2).
In the following discussion the sets 31,82,... will be
directly aomsidered and mapped on the proper segments from
P. without further comment.

whi

The Permutation (1,1)Il

In this section we will show that (1,1)l can be expressed
in terms of arithmetical functiona.
Starting with D = (1,24...,m) we apply X to D, (we shift 1 to a
position after m and then drop the first integer in the new m-tuple)
thus obtaining D, = (3545+00,m,1) with 2 mapped on 1, then
D, = {5465¢0.,m,1,3) with 4 mapped on 2,

ete.
If m is odd then p__l"S (my1,3,...,m~2) 18 reached,
2
with m~1 mapped on -El , and Dm+ = (3,...,0~2,8) with 1 mapped

"2_

—



on !%l .¥e observe here that,in general,siarting with the integer

set K = (11'12""’13)’ where m is o0dd, then :I.1 is mapped on
841  after applying X successively with K = D -

2
Next,if m is even,then D, = (1,3,0..,m~1),with m mapped

2
on % . Thus,when m is evdn, then 1 (i.e. the first element in
the integer set that we begin with) assumes, after % integers

are dropped, the firast position in a D-set with % elenents.
Now i€ 2 is 0dd then 1 is mapped om 2+ (8 +1)/2 ; otherwise.
1 becomes the first element in a further D-set with(%)/z = %

elements. The above situation continues as long as the further
D=gets thet have | as first slement have an even number of elsments.
lNow, starting with a D-set that has | as first element and having
h elementis,the next D-set which has 1 as first element will
have h-h/2 elements. Clearly,a D-set +that has |1 as first element
and with an odd number of elements will be reached, as the
above process can be repeated to obtain further D-sets that
have 1 as firast element.

Thus,in general, letting n-2k.q, where g is odd, 1 is
mapped on 2k.q/2 + 2k.q/4 teve + 2k.q/2k +{q+1))J2 = m - 951 .
For l-Zk.q, where q is odd the expression m-(q-1)/2 will be
denoted by #(m). Now if e is an integer in Pn then e is mapped
on % uwnder (1’1)n' Next if ¢ is an odd integer in P_ then e
assumes first position in & D-set with 1-251 elements ( after
1 integers, the even integers less than e , are dropped).

2
Then e is mapped on 331 + i(l—ggl)undor (1,1) ¢



(1,258, (1,8), (1,242 )

Now we proceed to calculate (1,n). for n,!%é s g , and

5%3 . Let m be even and comsider (1,!§g )y+ Operating with X on
Do we obfain D1, thus Do = (1,2,...,m) and

- (B2 23 4... m/2
D= (B5,...,m,1) with (1 5 3“...,(:;_2)/2

vhere the symbol on the right indicates that the elements of the
top row are mapped on the slements of the bottom row,each ele~

nent mapped on the element directly below it. Next we obtain

D, = (1,%'2 ) uith(% e B )
../2 P m~2
2
and Dy = # with(‘; 1)
B=-1 m

Combining the above “sosnonts“ vwe conclude that,

I+2

{1 '-2) 2 3.'. °te 1) where the slanted lines

- ’
' 1 2""_2 2 --cl‘ "1 n

indicate the different"segments™ . To obtain the decomposition
of thig permutation as a product of disjoint cycles we must

distinguish between the cases = = 0 (mod 4) and a = 2 (mod 4).

3% Let m = O (mod 4) then 1,n_.m-2 and now m-2 goes to (or is

mapped into } the next smaller even number, m-2.,.m=4 ....

éé Now % is even, 80 !%1 is also even and thus we have ,



m-4_........§'£4“ —*%wm—;g-r%q vee w3221 . Thus a cycle

B+4 m @2

has been isclatedjnamely,(1,n,n—2,n—4,..., 2 13 4 5= 4eee3,2)

with 24 elements. Next 5-;—2+n-1 . B-1 i8 0dd and is trans-

formed into the next smaller odd number a-3., Thus ,

B=1-» B3 - “._._&26, —'-M. Another cycle is isolated,namely,

2 -
{ '—%— y B=1, R=3,... !-é— ) withz elements . Heace (1,!2—2

the product of the above two cycles when m = O (mod 4).

Congider now the case m = 2 (mod 4).We have ,

1_.1-.n-2-....-o!+§§-'!§2 » 88 now l%g 18 even. ‘then we have
%—P""‘-—b LR ] -—b!? % L22_+ .'."".'3""2 ’ 80 that (1’!:5—2' )..

6
is the m-cycle (1,n,n—2,...,5'£— R 5—'5-?- y B=1yeee, m—'{,ﬁ, % , .‘!!.5_3 yeres3s2)
when n = 2 (mod 4).
I proceed now to find the cycles of (1,2) and (1,3%< ) .

vhen m is even . We consider first (1,% )n
Starting with D = (1,2,...,m) we find,

23 «ue
D, =(&2i,!'—£§,...,n,1) with(

1 re»

)

| n+6 B+
and D, = ¢ with(_ o---'!,'.f )

- on-2,ll-1 ’l

I\JIINIE
N

off ~
LM

The commas are inserted in the above symbol for clarity.



m+2 m+b
Combining the "segments" we get (2 Seee T3 5 eem 1 Eti)

2
1 2.0 m—;g'...m-Q m—1 m

NiB

Let m = 0 (mod 4). Proceeding as before to obtain the cycles,

we find that (1,3)

n is the product of the cycles,

g e
N

(1,“1""3’.0" ’-_2- g 2 ’ —2-—- ’...'3’2) &nd (I,E-Z,...,%),

vhen m = 2 {mod 4), ve get the m-cycle :

a+8
( 1,m=1,m=3,...,y _2_3% y ByR=2,0~4,..., ';.%6' :n_;'g !%!"'l3’2)'
Next,we consider (1,“';2 ), ¥hen = is even.

We start with D, = (1,250+0,m)

B4
) 6 3 sem
then D, = (%3 '%&'”""") "“h(t 2 ... ‘32)
- m+6
and p2 = @ wit g oo ® “3-)
2 e ""2 m"'1 l

¥hen m = 0 (mod 4), (1,55g )Il is the m-cycle

(1,m=1 ._3’“.’£f%ﬂ :%ﬁ "’n.z,,..!"é_a ,‘—;i 'll+__2__2 T T B

When m = 2 (mod 4), (1,!§g )‘ is the product of the cycle

B+2

(1"-1 ,2—3,.-., ';‘éﬁ ’_i- '000’3'2) md th‘ cycl.

(m,m=2,m=4,...,

}e

ofF %



We next consider the above permutations where m is odd.
We start by finding the cycles of the permutation (1,2 5 )

Let D0 = (1,2,...,8) . Now we apply X to D, thus obtaining,

M ﬂ 2 3 4 e %
D1=( 2 ) ,.-.,I,1) With

2 n—1
123 ... 3

nip
Thannza-("—;}) with(2 oo )

E:g-l LN ] ..-2 l"'1

and D3 = ¢ with(ggz)
|

Combining the above segments we obtain,

(234...!:-51 %- 1 %)

1 2 3 .o !5-1- H—Z-l ...l—2 I"" R

Now we must distinguish between the cases m = 1 (mod 4) and

mz3 (mod 4). Let m = 1 (mod 4) then (1,22 2 )

(1""1"’3:---32’;1 s%: s By W=2y 000y %5 ,&5-1' ,% peses3sl)e
It mz 3 (mod 4) then (1,531 ) is the product of the cycles

245 B+l ?"'_1’”.,3 2)

(1,."1,.‘3,0..’ 2 '] 2 y 2 and-

(l,l-Z,...,E%I ,!%1 )e
Next we consider (1,25l )a .

Let Do = (1,25400,m). We apply X to Do thus obtaining,




t1

| B+5
D1 = (%5 'I»_;'Z ’---jl,1) with (2 >4 . mf1)
1 23 4.0 5
Bl ... 1 E5
Then D, = § with ( 2 2 )
231 ...I—Z n—1 A

Combining the "segments™ we obtain

(234...!:32 %. 1 %)

1 2 3 LN ‘_;l %2 ...II—Z m-1 |

When m & 1 (mod 4) then (1,531)‘ is the product of the cycles
(1,.’1,."3,000’!‘5_-'1 ’%2 ’%1 ’100’3’2) and

(n,n-z,...,!ﬁﬂ, !%i ). Next when m = 3 (mod 4) then (1,Bt1
Z2'n

is the m-cycle (1,I~1,n-3,...,!§2 ,555 ,m,m—2,...,!§1 ,!%: ,!gl peeey3s2)

Pinally we consider (1,5“53 )+ When m = 1 (mod 4) then
a ig the m-cycle

(1 ’-"1 ,‘-3’ caw "+121 ']

,B,I-Z,---,% ,% ’ -‘—;2 goesy3pl)

Vhen m = 3 (mod 4) then (1, )

(1,0-1,..., 22 ,% 22 ,...,3,2) ama

n is the product of the cycles

m+11

(1,1-2,...,—5*-,!§1 ). The details are left for the reader to

supply.
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4. Relations Between {1,n)n and 8

The Case m 2imod

We have shown in part 3. of this paper that when m = 2(mod 4)

. B~2 6 -
then: (1’ = (1’.’.-2""’5';_ "l!%g y M1 ’m_3“_.’2.'£i’_2"2-2- sessyl)

n -
and (1’2 )m = (1"‘-1’-3"”"_".& "’3“2’-00!!;—6' B2 % ,mzzs-..,B 2)

2 T
and (1.!§g ) is the product of (m,m-2 m-4,...’ﬂ;6 and
Bt
(1,%5* 2 g = (mm=2,m-4,..., 000 ) (1,31 n-3...-r!§&";2’§s_§g!-..,2J.

The last line is included to make it easier for the reader to
follow the computations thet will follow.
Lemma Let A be a cycle that maps s on t. If A maps c on d
then the cycle (c,d) can be expressed in terms of A and the
cycle (s,%).
Let A = (a,b,...48,%,u,...,¥). Consider now
A (8,%) £J= (t,u). Now clearly any cycle (c¢,d} where A maps ¢ on d
can be obtained in terms of A and (s,%). Note that this lemma
is applicable when A is a cycle of a permutation that has other

cycles that are disjoint with A,
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Iheorem When m = 2 (mod 4) then the permutations (1,“52 )m’
(1,% ) and (1, —i— ) generate 8y°
Ve conaider the following computations:

2 J

(13 (1; 2 ) (% ’E'é_'g sR,M=1)

(1.2) (1,252 ), = (a-1,,8)

(2 ’ 2 ym,R-1 ) (“1"'§ ) = (% ,5§g ). Now applying the lemma
with A = (1,% ). and using the cycle ( ) we conclude
that the cycles (-,;rllﬁl ) » vees(3,2), (2,1) can be expressed

in terms of (1,2 ) and ( ) Next consider the following:

(1,3 ), 0,282 )7 o (24 Hz-‘i )

OB 0a B2 (1,832 )] . (a2 s,
Now (1,2) (2,3) (1,2) = (1,3)
(133) (3:4J (1’3) = (114) ’

etc. Thus from (1,2), (2,3)y.4., and (; ,';2 ), (1, )

can be obtained. Then
(1,82 ) (M2 me ). (12 w6

(B2 '—*-L)(—J B2 (B2 M6 ) | (m2 au

¥

(113 )l (haz.'a )‘ = (‘_;'g +B )

é'f L O
. Nov from (3 :“Eg) and (E%£ '), ( m/2 ,m) can be obtained.
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% ym) (m-1 :‘a% ) = (m=1,m)
(1,852 ) (BE2 m6 ) (m=2 )" (46 B0,
In a similar way (%lg ,5%-“ Ypsses(m-2,m), (m,1) can be obtained.
Now (m,m-1) and (m-2,m) give (B~1,m-2),then
(l-:i,l-j) and (m—1,m=2) give (m~-2,m-3)

(n-2,2~4) and (m-2,m-3) give (m-3,m-4)

(%ﬁ ,'-';J ) and (%’é, -‘—3—1 ) &lve (%—“- ,5-'-5-2- )o Thus the cycles
(152), (243)y+cep{m=1,m) can be obtained in terms of the three
perautations (1, )', (1,2 )., and (1, )‘, and it follows

that S. is generated by the latter as it is generated by the

former. Analogous results can be obtained for the case m=Q(mod 4)

The [

Let m = 3 (mod 4) then
(1,5-'-'2—1- )n = (1,!-1,:-3,...,#, !5-1-, #, I—"52,...,2) (l,n-a,...,%, ? )

(1’% )I. = (1,m=1 ,1-3,.--,%; ."_2"_4’.'.’%1’ —z! M_gl!‘ +»2)

(1L,B2 ) = (1,met,..., 22, B2, 8L B0l 2) (a,m-2,..., 281 ),

Theorep When m = 3 (mod 4) then the permutations (1.!'51 )‘:

e
(1,-2'1 )m! and (1.? ). generate Sm. The proof is on the next page.
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We consider the following computations:
-1
(1,51 5 (1,515 )y = (3t ,22,m)

(1:!2'1)- (1! ) "(233)
Jow form the product,

(Bl Bl ) (Bl - (gl A3,

Using (1,21 ) ana (%L, B2 ) ve can obtain
(B2, ...,(5,2),(2,1), by the lemma.

a3 1 m-t ~
(1!2 )H(E;_:l‘?)(‘ls%) =(n+_13%:)

and ("H'1 —52 ) ¢ (Ei} '——1 }yeees{m-q,m=2),(m=2,m)

From (1,E§l )n

can be obtained, and from (1, 2' ), and (' =1 -%—) ,

( y -55 Jseooy(m=3,m~1) can be obtained.

o L) w82 g (282
(%2, ?) and (%, % ) give m—;i, %’l )
(m=-3,m~2) and (m~3,m-1) give (m-2,m-1)
(m-2,m-1) and (m-2,m) give (m-1,m).

Thus all the cycles (1,2), (2,3)y+0e.,(m=1,8) can be obtained in

o+

tdras of the permutations (1, 2 )n ’ (1, and (1,!%2 )n

Jn
It follows that these three permutations generate Sn’

Analogous results can be obtained for the case m = 1 (mod 4).
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5 4 Note on the General Permmtation (k,n)n

The idea of the permutation (1’n)n discussed in part 7.
can be generalized. A permutation (k,n)n, ks m~1 , i8 defined
in a similar way to (1,n}lll except that now k elements (not one
element) are shifted by the operation X{the shifted elements
change their position as a block i.e. they keep their original
order). (k'an can be characterized as follows:

Consider a set of m empty pigeon-holes numbered with
1;25+++,m:. The following process is carried out: A set of m
fill-in blocks numbered 1,2,...,m ig given. Now we count k
- omply pigeon-holes starting from 1 and proceeding froa one
hole to the next in succession. We then fill in with the blocka
numbered from | to n the n successive pigeon-holes starting wita
-the hole numbered k+1 . Next we count another set of k empty
pigeon-holes proceeding from one empty hole to the next empiy
hole ( after the last hole,numbered m, is reached we start
counting from hole number { ). Now we fill in the next n eapty
pigeon~holes with the blocks numbered n+l,...,2n, again going

from one empty hole to the next empty hole. The process is con-
tinued until the fill-~in set is exhausted. Note that the final
set of fill-in blocks may consist of less than n blocks (when

n does not divide m ).

In the double array let the top row consist of the
nuabers of the fill-in blocks and let the lower row consist of
the original numbers of the pigeon holes:

h1 h2 ene hm
1 2 ...nm
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The double array, considered as a permutation, is the per-

amutation (k,n)l. The proof is left as an exercise. An example

of the above process is given, with m = 9, k = 2, n = 3.Note:

Dots are used in the sguares to signify that they are empty.

Step no.
1 . .
2 1 2 3 -
3 6 11213 4 | 5
4 l618l1 2139745
thus giving the permutation (2,3)9 (6 8
12



& Some Results and Exercises

Denote the permuwtation (1,1)l defined in paris.of

this paper by En. If En maps an integer s on the integer f
then denote f by El(s). The characterization of E_, as shown
in part 2 can be written as follows:
when 8 is even then En(B) =

8 .,
2’
(8-1)/2 + d(m - &1y,

vhen 8 is odd then E_(8) = =

Next we define E; as follows:
vhen 8 is even then E;(s) = % + #(m - 8/2)
vhen s is odd then E;(s) (s+1)/2.

Leusa ¢(2a) = ¢g(a) + a .
Let a = 2k.q where q is odd and k>1,

g(2a) = #(2¥*1.q)
- 2k+1.

d(a)+a= 2k.q + le + 2k.q

k+1 -

Hence ¢(2a) = g(a) + a . Now let k = 1, then
#(2) = 22 - &1 = (3a11)/2

gla) + a = a + E%l = (3a+i)/2

Hence #(2a) = g(a) + a .

fheorem let m = 2v + 1, for v= 0,1,2,..., then
- = l—1
E-(Zu 1) T + E!il (u).
2

(i) Let u be odd, then

2u-2 2u-~2
E(2u-1) = 552 4 g(ow - 55 )

= U=t +

2V42-u41
2

18
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E (2u-1) = ¥ v,

2
o~ ‘ ut+i
Now 5 + El'l'l(u) = v+ S
2

ThusE(zu-t) --— Em
2

(i1} Let u be even, then
B (2u-1) = 22 o g(ow - &2 )
= u=-1 + g( 2v + 2 -« w)
= u-1 + v+1-§ + i(v+1-— ) by the lemaa,
1
But !'E""‘El_"'l(u) =v+§ +d(v+1-52-‘)
f
Hence En(2uw1) = -%l + Eayp1(uw).
2

rcises
(a) Prove that when m = 2v, v=1,2,... then

E(2u-1) = & En (w).
(b) Vhen 2vy 4,

“’“?N and (1,1)21,,_1 have no cycle in common.
{e) “’”12v+7 v=0,1,2,... leaves at least one

integer fixed.



7. Program for (1,1)

I used the following program to obtain the cycles
of the permutation (1, 1) for m = 26,...,109. The tirst
part of the prograa( 1—34 ) is a traaalatioa into FORTRAN

" of the aechanical process presented ia part of this

paper. The second part of the program( 35-62 ) is weed to

obtain the cycles of (1, 1).,printcd in order. The prograa

steps are printod accoréing fo the requiremenis ot FORTRAN.
The ongran

smq sy FORTRAN STATEMENT

1 DIMENSION ITAB(100)
2 - DO 100 ¥=26,100

3 D6 11 K=t ,X

4 1 Ifmx)aﬂ)

5 K=t

6 . J=1

T 10 L=d+l

8 13 IF{N-L)21,12,12

9 21 L=1 o

10 12 IP(ITAB(J)+ITAB(L))1,2,3
1 1 PRIN? T

12 T . mmt(un rmm ERROR)
13 2 Inxu.)-x

14 KX+t

15 I¥{N-L)1,70,T

16 70 1=0

17 i) J=irt1

18 IF(M-K)16,17,17
19 a7 IMITANG 35)1,20,25
20 25 IZ(%-J)80,75,80

21 5 Jul)

22 80 J=J+1

23 GOTO1T

24 20 CONTINUE

25 : Ir'{x:-t)ﬁ,w.w
26 sbv1

g .

28 16

29

30 15

B
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55

303
78
91
56
59
301
47
- 100

LR R ST S
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