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Abstract—The need to automate the detection of agitation and the detection of agitation transition for dementia patients is a significant

facilitator for caregivers. This research aims at detecting the transitional phase toward agitation, as well as agitation detection of

subjects, using soft computing techniques that do not require supervision beyond the training phase. Three vital signs are monitored:

Heart Rate (HR), Galvanic Skin Response (GSR), and Skin Temperature (ST). These measures are fed into two proposed SVM

architectures which are based on the definition of a new confidence measure: “Confidence-Based SVM” and “Confidence-Based

Multilevel SVM.” Results show very high detection accuracy of agitation and agitation transition, a quick adaptation to the subject, and

a strong correlation between the physiological signals monitored and the emotional states of the subjects. Another challenge that is

successfully addressed in this paper is the ability to train the classifier on a limited group of subjects, and then test it on subjects not

belonging to the training group. The result is a learning algorithm that is “Subject-Independent.”

Index Terms—Agitation detection, agitation transition detection, support vector machines, confidence.
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1 INTRODUCTION

DEMENTIA is an acquired syndrome of decline in at least
one function of the cognitive system, such as language,

attention, problem solving, visuospatial, and memory, and
is sufficient to disturb the social and occupational life of an
alert person [1]. Dementia is very common in the aging
population, but can also hit at an early age and at any stage
of adulthood. A very common sign of an advanced stage of
dementia is disorientation in time or in place for people
suffering from this syndrome. In coming years, the number
of older patients potentially accessing the health care
system is expected to double, increasing from 35 million
in 2010 to 72 million by 2030 [2]. This population boom, a
78 percent increase, will result in 1 in every 5 Americans
being over the age of 65 by the year 2030 [2]. The rapidly
growing elderly population brings new health care issues
into sharp view, particularly that of caring for elders with
Alzheimer’s Disease, which is the leading cause of dementia
[2]. It is in the long term care setting that the effects of
dementia are particularly felt, as the disorder results in
negative behavioral symptoms in 54 percent of patients [2].
This is primarily due to agitation and can interrupt patient
care and frustrate caregivers.

Caring for elders with dementia is psychologically
demanding and can result in psychiatric symptoms of
caregiver “burnout” [3]. This also has serious implications.
The loss of skilled health care providers will undoubtedly

be felt in the often short-staffed world of long-term care. In
order to control costs, provide optimal patient care, and
prevent the burnout of skilled professionals, efficient
methods of agitation measurement and management must
be implemented to aid nursing staff in their efforts.

The rest of the paper is organized as follows: Section 2
discusses previous techniques of agitation and emotion
detection. Section 3 introduces SVM, VC dimension, the
proposed confidence measure, and the resulting detection
algorithms. Then the experimental results are presented in
Section 4.

2 RELATED WORK

Emotion detection has been shown to be an essential tool in
developing machine intelligence [4]. In general, an emotion
detection experiment can be treated through measuring
different types of biological signals or by using image
processing techniques for facial expression analysis [5]. This
paper uses biological signals for emotion detection, which,
in general, has four main challenges:

. The choice of the biological signals that are mon-
itored. Signal acquisition has to be noninvasive and
as transparent as possible to the monitored subject.
Hence, a limited number of biosignals are available,
which include skin temperature, galvanic skin
response, electrocardiogram (ECG), pupil diameter,
and respiration.

. The choice of the type of emotion that the algorithm
will predict. Emotions are controversially defined,
but a common set of basic emotion labels is: sadness,
happiness, fear, anger, surprise, and disgust, as
defined by Ekman [6].

. The choice of a safe method to induce these types of
emotions. The most used methods are video clips
that contain a scene corresponding to the desired
emotion, audio clips composed of music or sounds
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that correspond to the desired induced emotion, or a
mix of both methods.

. The choice of the features that are extracted from
the biosignals as well as the recognition algorithm
that is used to detect emotion. In general, the
features extracted are from the ECG, which com-
monly are the total energy, the RMS value, and the
interbeat interval. The recognition algorithms in-
clude K-means or C-mean clustering, regression
algorithms such as canonical regression, neural
networks, support vector regression, and others.

ECG, skin temperature, skin conductance, and respira-
tion have been used to extract 22 features for emotion
recognition [7]. The induction of fear, joy, and neutrality
was done using video clip stimuli. The authors used
canonical correlation to achieve an 85.3 percent correct
classification ratio. This method can be improved by
reducing the number of features extracted from the ECG
and trying to omit respiration from the monitored signals,
which can be uncomfortable for the subject. Another work
developed emotion recognition using ECG, skin tempera-
ture, and electrodermal activity, another name for GSR.
Four different emotions were induced, sadness, anger,
stress, and surprise, by reading a story with both the voice
and the story reflecting the emotion induced. Then support
vector machine for regression was used for classification,
and 67.5 percent of correct-classification ratio was obtained
[8]. The method can be improved by using multiclass SVM
or by using one of its variants. Other work proposed
detecting human emotion using only the ECG. From the
ECG, three features were extracted: energy recoursing,
energy efficiency, and root mean square. Four emotions
were induced using audiovisual methods: happiness,
disgust, surprise, and fear. Classification was done using
unsupervised fuzzy C-mean clustering, where db4 wavelet
transform was used for feature extraction. No accuracy was
reported, but the graphs show good accuracy of clustering
[9]. Fisher projection was used with sequential floating
forward search to achieve an accuracy of 81 percent in
detecting eight classes of emotion, including neutral. This
study has proven the feasibility of emotion detection and
that the features extracted for all of the emotions on a
specific day are clustered more tightly than the features of a
specific emotion during multiple days [4].

A high percentage of the agitation management techni-
ques requires efficient and accurate agitation detection.
Although not all for patients with dementia, many different
agitation detection techniques were previously developed.
Some techniques use hidden Markov models to estimate the
inputs to an SVM, using an outside camera to observe the
movement of the patient while sleeping [10]. The limitations
of this approach are privacy concerns and the inability to
monitor the patient all day. Another limitation is in the
Markov model used. It is known that any model is called a
Markov model if: knowing the present, the future is
independent of the past. But for agitation detection,
knowing the present is not always enough to predict the
future, and historical behavior must be known. Some other
techniques of frustration detection use facial expression,
head movement, and eye movement. A dynamic Bayesian
network model was used to integrate all of these features as
well as GSR, RTD, and Blood Volume Pressure (BVP) [11].

The user must be sitting in front of a computer and holding
the mouse to be able to measure all of the inputs, which is a
limitation for elderly subjects and cannot be used clinically.
A theoretical limitation to this method resides in the fact
that using a Bayesian model means that the underlying
probability densities between the output of the system and
its inputs are known. But this probability density is, in most
cases, not known and cannot even be estimated; hence, the
need for a learning algorithm that does not need the
underlying probability densities like SVM. Some studies
done on the acceleration of the wrists, ankles, and waist
found that agitated people had sudden movements of the
wrists and ankles [12].

The most relevant study that was done so far was based
on the measurement of BVP, GSR, ST, and the pupil
diameter. From the heart rate, they extracted the Inter Beat
Interval (IBI), and then studied it in the frequency domain
because the ratio of the low frequency component over the
high frequency component could be an indicator of stress
[13]. Eleven features were extracted from these sensors and
then fed into an SVM. The elicitation of stress was done
using the Stroop test [14]. The SVM was tested using the
cross-validation technique, and results showed 90.1 percent
accuracy [13]. The limitation of this technique is the use of
11 features that are fed into the SVM, which is computa-
tionally demanding for a micro controller implementation.
Moreover, the user has to sit in front of a computer to be
able to capture the pupil diameter.

Previous work done by our team has shown that subject-
independent agitation detection was possible by monitoring
three vital signs: HR, GSR, and RTD, and, using SVM, it was
possible to detect the agitation state of a subject even if the
device was not trained on that specific subject. This was
achieved with an accuracy that reached 84 percent [15]. The
limitation of the method was the issue of the “gray zone.”
The gray zone is the transitional phase where the subject is
passing from one state to another. In this area falls more
than 95 percent of the detection errors of the method.
Another work done by our team has also shown that using
SVM with a hierarchical architecture that takes into
consideration the distance between the two classes and
hence giving the SVM a “zooming” ability gave high
accuracy, reported at 96.16 percent. However, a bug was
discovered in the code where points, not being mapped into
any class, were being considered as correctly classified
instead of wrongly classified. With this bug corrected the
accuracy that should have been reported is 95.1 percent,
which is still higher than what was previously reported in
the literature. Either way, in this case the errors that were
falling in the “gray zone” were also of high percentage [16].
The main question remaining is how to define the point
between not agitated and agitated, and what the true
ground truth is.

“Is it possible to define a transitional phase that detects
the shifting of a subject from the relaxed state to the
agitated state?” The two previous works published by our
team were not able to detect agitation transition and did not
introduce a confidence measure [15], [16]. The multilevel
SVM introduced was based on the distance between the
points and the centroid of the training class, and did not
include any measure of confidence [16].
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The aim of this paper is to show that using SVM, it is
possible to define and detect the transitional state of a
patient. In order to achieve this aim, a new confidence
measure on the decision of a support vector machine is
introduced. This confidence measure is used to modify a
single 2-class SVM classifier into a single 3-class SVM
classifier. To the best of our knowledge, this has not been
developed in the literature. This new 3-class classifier is the
basis of agitation transition detection. This new confidence
measure is also used to modify a single 2-class SVM
classifier into a multilevel 2-class SVM classifier architec-
ture. This new architecture is used for agitation detection
and yields, using the same training set, higher accuracy
than single SVM 2-class classifier.

3 PROPOSED DETECTION ALGORITHM

In this section, we present the derivation of the detection
algorithm as well as its implementation in two different
architectures.

3.1 Feature Selection

The Central Nervous System (CNS) has two main sections:
the somatic part, which is responsible for all of our voluntary
movements, and the autonomic part, which controls all of the
nonvoluntary movements, specifically those of the heart. The
autonomic system consists of two main sections: the
Sympathetic Nervous System (SNS), which is concerned
with all emergency cases that we encounter in our lives, and
the Parasympathetic Nervous System (PNS), which is
responsible for our relaxed state. Finding the activity of the
PNS and SNS leads to knowledge about the stress of the
subject. High PNS activity indicates a relaxed patient, while
high SNS activity corresponds to agitation.

Stress studies showed a high correlation between Heart
Rate Variability (HRV), PNS, and SNS [17]. In most clinical
applications, HRV is analyzed in the time domain and in the
frequency domain. An important measure of the heart is the
R-R interval, from which it is possible to extract the IBI.
Indeed, the IBI can be extracted by taking any point as the
reference point, but, since the R peak has the highest
amplitude, it is immune to possible sources of noise [18],
[19]. In the frequency domain, studies have shown that
power distribution has four main spectral components: High
Frequency (HF), Low Frequency (LF), Very Low Frequency
(VLF), and Ultra Low Frequency [20]. They have also shown
a major correlation between HF and PNS and between LF
and SNS [17]. LF is calculated from the IBI, which is
extracted from the normal to normal interval. Therefore, IBI
is used as one of the features for agitation detection.

In order to improve detection, skin conductance and skin
temperature were also monitored. These two signs were
chosen because their measurement is noninvasive and they
are in a direct relation to stress status. When subjects are
stressed, blood vessels are contracted, which leads to a drop
in the skin temperature. Studies have shown that the skin
temperature is at its lowest when stress is at its maximum
[21]. Also, the galvanic skin response is an indicator of stress
level. Studies have shown that when the stress level goes up,
the moisture of the body also goes up, which leads to a
decrease in the resistance of the skin. In order to validate the

necessity of using all of the above-mentioned features, a
study using Principal Component Analysis (PCA) was
conducted [22]. PCA is a well-known method that reduces
a number of possibly correlated features to a smaller number
using their covariance matrix: A feature with high variance is
most likely to have more information and a feature that is
independent of the other features is also of high importance
because it carries new information. PCA is performed as
follows: First, the data are centered by subtracting from each
feature its mean, then the covariance matrix is computed,
and finally, an eigenvalue/eigenvector decomposition is
performed on the covariance matrix. The eigenvalues are
used to classify the features in order of variability in each
feature. The feature having the highest value is the one that
has the most variability and, hence, contains most of the
information. For agitation detection, the results for the three
eigenvalues are the following: �1 ¼ 0:66, �2 ¼ 0:28, and
�3 ¼ 0:11. The values of the eigenvalues are comparable
and, hence, taking away one feature will induce a significant
loss of information; thus, the three features are used.

The challenge for a prediction systems is how to combine
the different indicators in order to make a decision, and
how to predict a large number of unseen patterns from a
few known ones. The prediction has to be accurate,
consistent, and computationally effective. This paper deals
with the prediction problem; it presents an algorithm for
detecting agitated and nonagitated states as well as an
additional output that will predict the transitional phase
between the two states. This algorithm is based on Support
Vector Machines, which generalizes well, and on the new
confidence measure introduced in this paper.

3.2 Support Vector Machines

In the simplest form, SVM uses a linear hyperplane to create
a classifier with a maximal margin [23]. In other cases,
where the data are not linearly separable, the data are
mapped into a higher dimension feature space. This task is
achieved using various nonlinear mapping functions:
polynomial, sigmoid, and Radial Basis Functions (RBF)
such as Gaussian RBF. In the higher dimension feature
space, the SVM algorithm separates the data using a linear
hyperplane. Unlike other techniques, probability model and
probability density functions do not need to be known
a priori. This is very important for generalization purposes
as, in practical situations, there is not enough information
about the underlying probability laws and distributions
between the inputs and the outputs. Since SVM has been
recording state-of-the-art accuracies in many fields, and,
since it has an excellent generalization ability, it is used in
the course of this paper.

What follows is an introduction to the theory of SVM
and the general equation of the hyperplane that will
separate the two classes. In the case of linearly separable
data, the approach is to find among all the separating
hyperplanes, the one that maximizes the margin. Clearly,
any other hyperplane will have a greater expected risk
than this hyperplane.

During the learning stage, the machine uses the training
data to find the parameters w ¼ ½w1w2 . . .wn�T and b of a
decision function dðx;w; bÞ given by:
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dðx;w; bÞ ¼ wTxþ b ¼
Xn
i¼1

wixi þ b: ð1Þ

The separating hyperplane follows dðx;w; bÞ ¼ 0. In the
testing phase, an unseen vector x will produce an output y
according to the following indicator function:

y ¼ signðdðx;w; bÞÞ: ð2Þ

In other words, the decision rule is: If dðx;w; bÞ > 0, then x

belongs to class 1, and if dðx;w; bÞ < 0, then x belongs to
class 2.

The weight vector and the bias are obtained by
minimizing the following equation:

Ldð�Þ ¼ 0:5�TH�� fT�; ð3Þ

subject to the following constraints:

yT� ¼ 0;

� � 0;

where H denotes the Hessian matrix given by: H ¼
yiyjðxixjÞ and f is the unity vector f ¼ ½1; 1 . . . 1�T . Having
the solutions �0i of the dual optimization problem will be
sufficient to determine the weight vector and the bias using
the following equations:

w ¼
Xl
i¼1

�0iyixi; ð4Þ

b ¼ 1

N

XN
i¼1

1

yi
� xTi w

� �
; ð5Þ

where N represents the number of support vectors.
The linear classifier presented above has limited capabil-

ities since it is only used with linearly separable data, while,
in most practical applications, data are random and are not
linearly separable. The nonlinear data have to be mapped to a
new feature space of higher dimension, using a suitable
mapping function, �ðxÞ, which is of very high dimension,
potentially infinite. Fortunately, in all of the equations, this
function appears only in the form of a dot product.

From the theory of reproducing kernel Hilbert spaces
[24], which is beyond the scope of this paper, a kernel
function is defined to be:

Kðxi; xjÞ ¼ �ðxiÞT�ðxjÞ: ð6Þ

By replacing the dot product xi � xj by Kðxi; xjÞ in all of the
previous equations, the nonlinear hyperplane is deter-
mined as:

dðxÞ ¼
Xl
i¼1

yi�iKðxi;xÞ: ð7Þ

This remarkable characteristic of the kernel transformation
gives the ability for SVM to operate on multidimensional
data without affecting the processing time. Indeed, in the
linear case, the processing time is roughly the time needed
to invert the Hessian matrix, which is of Oðn3Þ, where n is
the number of training points. Since the transformation
from the linear to the nonlinear case is performed by the
simple kernel transformation, the dimension of the Hessian

matrix is not changed, and hence, the processing time is the
same; thus its applicability and high performance in
multidimensional data.

The solution of (3) yields the hard margin classifier. In
general, it is useful to use a soft margin classifier to preserve
the smoothness of the hyperplane and prevent �i from
tending to infinity. This classifier is obtained using the same
minimization process by adding one more constraint to (3).
The constraint is: 0 � �i � C, where C is defined by the
user. If C tends to infinity, the soft margin classifier tends
toward the hard margin. In what follows, we define and
discuss the natural confidence measure.

3.3 Natural Confidence Measure

The significance of the confidence measure extends beyond
the accuracy of a classification problem. We live in a world
where we are constantly making decisions and estimating
our confidence in these decisions. For example, a reviewer
has to make a decision about accepting or rejecting a certain
paper and has to fill in the confidence in his decision. The
ability of humans to give decisions as well as confidence
measures in these decisions suggests that a confidence
measure is useful in building classifiers.

Intuitively, a natural confidence measure in the
decision dðxÞ of an SVM would be inversely proportional
to the distance of x to the hyperplane H. As x gets closer to
the hyperplane, the confidence in the decision decreases.
Formally, the confidence could be defined as:

Definition 1. Let x be an unseen vector, then the confidence C in
the decision is given by:

C ¼ �

distðx;HÞ ; ð8Þ

where distðx;HÞ is the distance of vector x to the hyperplaneH
and � 2 IR�þ.

If y is a vector on the hyperplane, then distðx;HÞ is
obtained by minimizing the following equation:

distðx;HÞ2 ¼ minðx� yÞT ðx� yÞ; ð9Þ

subject to the constraint dðyÞ ¼ 0, where d is the equation of
the hyperplane given by (7). The global minimum for this
minimization problem is not guaranteed to be found
because of the complex nature of the decision function (7)
as well as the lack of guarantee that dðyÞ ¼ 0 is a continuous
function.

Definition 1 does not capture the confidence of the
decision accurately in all cases. Confidence should also be a
function of the distance of the point to the training set. It is
intuitive that if a point, z, is far from the hyperplane but also
far from the training set, then it should have very low
confidence. Four cases can be thought of:

. A point far from the plane and far from the training
points should have very low confidence.

. A point close to the hyperplane and far from the
training points should have low confidence.

. A point close to the hyperplane and close to the
training set should have medium confidence.

. A point away from the hyperplane and close to the
training set should have the highest confidence.
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But, the challenge that arises is how to define the distance to
the training points. It can be defined as the distance to their
centroid or the minimal distance to the training points or
the maximal distance to the training points. Ideally, one can
imagine a two-dimensional classification problem, where
all of the points to be classified lie on a plane. The decision
algorithm with a confidence measure should be able to map
one class above the plane and the other class under the
plane. And the points left on the plane should be undecided
(no confidence). However, a traditional classifier just
groups one class in a region, with everything outside this
region classified as the other class, and no measure of
confidence is provided.

3.4 Proposed Confidence Measure

The proposed method is based on a dimension proposed by
Vapnik and Chervonenkis, which was named after them:
the VC dimension. By definition, the VC dimension is the
capacity of the learning algorithm to shatter points in the
input space [25]. Formally, it is the cardinality of the largest
set of points that an algorithm can shatter. The importance
of the VC dimension is that it appears explicitly in the
bound on the total error of an algorithm. The total error of
the learning machine is the sum of the training error
(empirical error) and the testing error (generalization error):

" ¼ "emp þ "g; ð10Þ

where "emp is the training error and "g is the generalization
error [25]. "emp can be made arbitrarily small by choosing a
machine with a VC dimension at least equal to the number
of training points. In order to decrease the training error,
one has to increase the VC dimension. If a machine can split
all of the training points without any errors, it will have
"emp ¼ 0. Vapnik has established a bound on the testing
error given by:

"g <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V C½ln

�
2l
V C

�
þ 1� ln

�
�
4

�
�

l

s
; ð11Þ

where l is the number of training data, V C is the
VC dimension (referred to as h in some references), and 1�
� is the probability for which this last equation holds. This
inequality shows that the error is bounded by an increasing
function of the VC dimension, and thus a trade-off should be
made between the empirical error and the generalization
error. Although it is extremely difficult, and sometimes
impossible, to compute the VC dimension of a certain
algorithm, a bound on the VC dimension has been established
and will be very useful in building the confidence measure.
Vapnik states that a bound on the VC dimension is given by:

V C < kwk2D2; ð12Þ

where D is the minimum radius of the sphere that contains
all the training points and kwk is the norm of the weight
vector that SVM is minimizing. kwk2 is given by [25]:

kwk2 ¼
Xn
i¼1

�i: ð13Þ

This bound is important in two ways: It is easy to compute,
and Burges has shown that the true VC is closely related to

this bound. In particular, he showed that, most of the time,

the true minimum of the VC dimension is obtained when

this bound is minimal [26].

Notation. The following notations will be used in the definitions

and propositions that follow:

. X ¼ fx1; x2; . . .xng is the set of training vectors,
where xi 2 IRm and Y ¼ fy1; y2; . . . yng is their
corresponding class, where yi 2 ½�1; 1�.

. SðX;Y Þ is any learning algorithm trained by training
vectors X with class Y, and where all of the parameters
of S are set.

. D is the radius of the smallest sphere that englobes all
of the training points and w is the weight vector of the
hyperplane.

. z is an unlabeled vector and dðzÞ 2 ½�1; 1� is its
prediction given by (7).

. Xz is the set of training points X to which z is
appended, Xz ¼ fX; zg.

. Y�1 is the set of labels Y to which ð�1Þ is appended:
Y�1 ¼ fY ;�1g, and Y1 is the set of labels Y to which
ð1Þ is appended: Y1 ¼ fY ; 1g.

Based on the notation presented, Xz represents a new

training set that containsX to which z is added. Y�1 is the set

of labels formed by Y to which ð�1Þ is added. This means

that we are assuming that z is a training point having the

label ð�1Þ, while Y1 assumes that z has the label ð1Þ. It is now

necessary to define a quantity that estimates the confidence

in each of the assumptions (z belongs to class 1 or class -1).
Note that:

. To every SðX;Y Þ corresponds a unique couple
ðD;wÞ. This can be justified by the fact that D is
unique and depends on the training points X, and w
is a single valued function of S, X, and Y .

. Since the VC dimension is closely related to its upper
bound, its upper bound V Cmax ¼ D2kwk2 will be
used.

. As a consequence of the uniqueness of the couple
ðD;wÞ to every SðX;Y Þ, we will denote the VC
dimension of SðX;Y Þ by V Cmax

S ðX;Y Þ.

Definition 2. Given SðX;Y Þ and an unseen vector z, the measure

of confidence on the decision dðzÞ by SðX;Y Þ is given by:

CðzÞ ¼ dðzÞ
�
V Cmax

S ðXz; Y�1Þ � V Cmax
S ðXz; Y1Þ

�
: ð14Þ

Note that dðzÞ is the decision taken by SðX;Y Þ, while

SðXz; Y�1Þ and SðXz; Y1Þ are never used to take decisions,

but are used only to measure their V Cmax
S .

Equation (14) is a general measure of confidence,

irrespective of the learning algorithm S. In the rest of this

paper, the study is restricted to Support Vector Machines.

Proposition 1. If z is on the hyperplane generated by SðX;Y Þ
(i.e., dðzÞ ¼ 0), then:

1. CðzÞ ¼ 0,
2. V Cmax

S ðXz; Y�1Þ ¼ V Cmax
S ðXz; Y1Þ.
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Proof. 1) CðzÞ ¼ 0 is a direct result of the definition by
noticing that using the soft margin classifier kwk is always
finite and thus V Cmax

S is also finite.
2) Recall that V Cmax

S ¼ D2kwk2 and notice that, in
SðXz; Y�1Þ and SðXz; Y1Þ, the radius of the smallest
sphere that contains all of the training points ðDÞ is the
same. So it is sufficient to prove that kwk is also the same
in both cases. Note that the distance between a support
vector and the hyperplane is given by [23]:

dh ¼
1

kwk : ð15Þ

If z is on the hyperplane, then the new hyperplane
will be a simple translation of the old hyperplane by a
distance of dh

2 toward the other class, i.e., in the case of
SðXz; Y�1Þ, the hyperplane moves toward class (1), while,
in the case of SðXz; Y1Þ, the hyperplane moves toward
class (-1) by the same distance as illustrated in Fig. 1.
Since the distance is the same in both cases, we can
deduce from (15) that kwk is the same in both cases
and, since D is also the same, then V Cmax

S ðXz; Y�1Þ ¼
V Cmax

S ðXz; Y1Þ. tu

Note that the only proof needed is for the linearly
separable case because, for the nonlinear case, SVM will
map the data into a higher dimensional feature space F , in
which the training data are linearly separable. This is a
result of the fact that the training error in support vector
machines can always be made zero.

As stated in the discussion of natural confidence, an
important property of the confidence measure is that C
should satisfy the four cases of confidence. This property is
achieved by careful choice of the kernel function, as shown
in Proposition 2.

Proposition 2. Let z be a vector far from any training point such
that: kz� xik ! 1; 8xi 2 X.

If Kðxi; xjÞ is such that 0 � Kðxi; xjÞ � 1 and
limkxi�xjk!1Kðxi; xjÞ ¼ 0, then CðzÞ ! 0.

Proof. Two conditions need to be satisfied for CðzÞ ! 0:
dðzÞ ! 0 and V Cmax

S <1. By using the soft margin

classifier, it is guaranteed that: �i <1; 8i. By applying
(7), it is clear that every term in the finite sum tends to
zero because Kðx; xiÞ ! 0, and hence dðzÞ tends to 0.

To prove that V Cmax
S <1, it is only necessary to

prove that D2 is finite because it is already known by (13)
that kwk2 is finite.

By using a kernel function, every point xi is mapped
to a new space (the feature space) using the mapping
function �ðxiÞ. The distance between any two points in
the feature space is given by:

D2
fðxi; xjÞ ¼ ð�ðxiÞ � �ðxjÞÞ

T ð�ðxiÞ � �ðxjÞÞ:

Expanding and using (6):

D2
fðxi; xjÞ ¼ Kðxi; xiÞ þKðxj; xjÞ � 2Kðxi; xjÞ:

But, 0 � Kðxi; xjÞ � 1 implies that D2
fðxi; xjÞ is finite

8xi; xj. Since D2 is the square of the distance between
the center of the sphere and the training points that lie on
the boundary, then it is also bounded and, hence, V Cmax

S is
bounded, which implies that CðzÞ ! 0. tu
Proposition 2 presents a sufficient condition on the

kernel function. One kernel that satisfies this condition is
the Radial Basis Function (RBF) kernel:

Kðx; xiÞ ¼ e�ðx�xiÞ
T��1ðx�xiÞ;

where ��1 is a covariance matrix. This type of kernel function
satisfies the condition of Proposition 2 because the covar-
iance matrix is always a positive semidefinite matrix. Indeed,
a positive semidefinite matrix A satisfies xtAx � 08x, and

if kx� xik2 !1;
then ðx� xiÞT��1ðx� xiÞ ! þ1;
thus Kðx; xiÞ ! 0;

and �ðx� xiÞT��1ðx� xiÞ � 0;
thus 0 � Kðx; xiÞ � 1:

The Gaussian kernel is the case where the covariance matrix
is a diagonal matrix with identical value �2:

Kðx; xiÞ ¼ e�
1

2�2ðx�xiÞ
T ðx�xiÞ;

where � is the width of the gaussian function. This kernel
also satisfies Proposition 2:

ðx� xiÞT ðx� xiÞ ¼ kx� xik2:

if kx� xik2 !1;
then Kðx; xiÞ ! 0;

and � 1

2�2
ðx� xiÞT ðx� xiÞ < 0;

thus; 0 � Kðx; xiÞ � 1:

The choice of the Gaussian kernel function is not limiting
because this kernel function is used in a large percentage of
applications. It is a very popular kernel function because a
bias term is not needed in the decision function, which
leads to an easier quadratic optimization problem. The
second reason is that the number of parameters that
influence the complexity of the model in the Gaussian
function is much less than the polynomial function. Finally,
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the Gaussian kernel has less numerical complexity because
it is bounded between 0 and 1, while the polynomial
function can tend to infinity.

3.5 Proposed Architectures

The proposed classifiers are based on the properties of
CðzÞ. Proposition 1 shows that the limit of the confidence
is given by CðzÞ ¼ 0. In addition, CðzÞ < 0 implies that the
decision was taken in favor of one class, while z looks
more like the other class. Indeed, suppose dðzÞ < 0, thus z
was classified as class ð�1Þ. But if CðzÞ < 0 implies that
V Cmax

S ðXz; Y�1Þ � V Cmax
S ðXz; Y1Þ > 0, which means that if z

was a training point of class ð�1Þ, it would have generated
a classifier that has a higher VC dimension than the one
that would have been trained with z as class ð1Þ. The error
bound given by (11) suggests that the first classifier (the
one that has the higher VC) will have a higher probability
of error, which also suggests that the point should rather
be in class (1). The same reasoning holds if, initially, z was
classified as class ð1Þ and CðzÞ < 0, then it should have
been of class ð�1Þ. CðzÞ could be used in several ways;
Here, two methods that are used in agitation detection are
presented.

3.5.1 Agitation Transition Detection

Section 3.2 has shown that an SVM classifier takes an input x
and classifies it as class ð1Þ or class ð�1Þ. Traditionally, to
obtain a 3-class SVM one has to cascade two SVMs: The first
one has to decide if the input is of class ð1Þ or not class ð1Þ. If
not class ð1Þ, then it goes into the second SVM that is trained
to decide between class ð2Þ and class ð3Þ [25]. Based on CðzÞ,
it is possible to define the three classes using only one SVM.

Definition 3. Let z be an input of unknown class, then:

Class ¼
�1; dðzÞ < 0 and CðzÞ > 0;
1; dðzÞ > 0 and CðzÞ > 0;
T ; CðzÞ � 0;

8<
: ð16Þ

where “T” is the transitional phase of agitation.

This 3-class classifier is used for agitation transition
detection. If the output of the system is ð�1Þ, then the
subject is not agitated. If the output of the system is ðþ1Þ,

then the subject is agitated. If the output is ðT Þ, then the
subject is in the transitional phase: either was calm and is
getting agitated or was agitated and is calming down. The
agitation transition detection is possible with the addition of
the confidence measure to the normal 2-class classifier. The
focus will be on the case where the subject is getting
agitated because the ultimate goal is early prediction of
agitation. To illustrate this classifier, six training points of
each class are chosen to be linearly separable (Fig. 2).
Class ð�1Þ is represented by the big filled dots and class ð1Þ
by the large filled squares. Fig. 2 shows the dark area
around the training points of each class. It consists of empty
circles that correspond to the confident area: (CðzÞ > 0) and
are classified correctly (þ1 near the large filled squares and
�1 near the big filled dots). It also shows a light area that
consists of light dots that correspond to the nonconfident
points (CðzÞ < 0). Fig. 2 shows that, according to the
discussion of Section 3.3, a classifier, along with a
confidence measure, should be able to map confident
points above and under the plane, while leaving nonconfi-
dent points on the plane is achieved. It could be visualized
as if the dark area corresponding to the points near class ð1Þ
are above the horizontal plane, while the points next to
class ð�1Þ are under the plane and the remaining points are
on the plane, while the hyperplane generated by a
traditional SVM, and shown in Fig. 3, shows that everything
that falls inside the closed area is of class ð1Þ, while the ones
outside the closed area are of class ð�1Þ, where many
correspond to classification errors.

Instead of being used to define a transitional phase, CðzÞ
could be used to enhance the two-class classification
accuracy, as discussed in the next section.

3.5.2 Multilevel SVM

The multilevel SVM is a two-class classifier based on
cascading two SVMs. The first SVM (SVM-1) is trained by
“easily classifiable” points, while the second one (SVM-2) is
trained by not “easily classifiable” points. An “easily
classifiable” point is defined as follows:

Definition 4. Let X be the set of training points and x 2 X is
one specific training point. x is said to be easily classifiable iff
CðxÞ > 0.
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Note that the confidence is computed by SVM-1; the
output of this architecture is defined as follows:

Definition 5. Let z be an input of unknown class, then:

Class ¼

�1; d1ðzÞ < 0 and C1ðzÞ > 0;
or d2ðzÞ < 0 and C1ðzÞ < 0;

1; d1ðzÞ > 0 and C1ðzÞ > 0;
or d2ðzÞ > 0 and C1ðzÞ < 0:

8>><
>>: ð17Þ

An unknown point z is classified by SVM-1 and a measure
of confidence is then generated. If SVM-1 is confident of its
decision, then this decision will be the final one. If SVM-1 is
not confident, then the point is sent to SVM-2, and its
decision will be the final decision.

Note that this architecture is recursive and could be
extended to SVM-n, and the unknown point will go deep in
the architecture until the decision made by SVM-j is confident
and then its decision will be the final one. In the agitation
detection application, two SVMs were enough to classify all
the points.

The next section gives a brief description of the
experimental setup of data collection as well as the results
obtained by the methods described in this section.

4 EXPERIMENT DESIGN AND RESULTS

The experiment objective was to carry out a quantitative
study designed to evaluate the onset of agitation, using
healthy subjects. One effective way of inducing stress safely
into healthy subjects is the Stroop Color-Word Interference
Test. The Stroop test requires subjects to say out loud the
color of words, spelling out color names that do not match. It
has been shown that this test induces anxiety symptoms [14].

The Stroop Color-Word Interference Test in its classical
version has been widely used as a psychological or
cognitive stressor that can safely induce controlled limited
stress in subjects. Previous research has indicated that by
adding task pacing to the Stroop test, physiological
responses intensify. Three sets of PowerPoint slides were
used to conduct the Stroop test while the physiological
parameters were monitored. The first set is called the color
blocks (show a block of color only), the second set is called
congruent word slides (word and color matches), and the
third set is called incongruent word slides (words do not
match color presented). The test included 60 randomly set
color blocks (1 min), where subjects are to name out loud
the color they see, 60 randomly set congruent word slides
(1 min) where subjects are to read out loud the word they see,
and finally, 120 randomly set incongruent word slides (2 min)
where subjects are to name the color of the word they see (not
read the word). Each slide is set to show for one second. If the
subjects missed a slide, they were asked to move on to the next
one. The overall objective of the subject was to get as many
correct answers as they could. Subjects were asked to
complete the Trait Scale State-Trait Anxiety Inventory
(T-STAI) before and after the test. The two STAI filled up by
a subject allowed us to validate their state.

As discussed previously, the features used are the skin
temperature, the galvanic skin response, and the HRV. From
the heart rate, the Inter-Beat Interval (IBI) was extracted.
HRV has been used extensively in reflecting the way the
central nervous system works, specifically the sympathetic

side. Although the amplitude of the heart beat is also

correlated to the stress level, it was not used as an input to the

SVM in order to reduce calculations and power consump-

tion, which is imperative for the portability of the device.

4.1 Data Collection and Processing

To measure and record the physical features, the following

sensors were used: a polar exercise heart rate monitor from

Vernier, a 1,000 ohms platinum resistance temperature

detector (RTD) from Omega, and electrodes that wrap around

the fingers for monitoring galvanic skin response. The RTD

sensor changes its resistance with the skin temperature of the

subject. The change in resistance is converted into tempera-

ture change by using the Callendar-Van Dusen equation:

Rt ¼ R0 þR0�

	
t� �

�
t

100
� 1

��
t

100

�

� 	 t

100
� 1

� �
t

100

� �3

:

ð18Þ

Since the measured temperature is always above 0, only the

Callendar coefficient � is used, while the Van Dusen

coefficient 	 ¼ 0 is for positive temperatures.
The experimental procedure is as follows: The subject

places the sensors around his body. He then undergoes the
Trait scale State-Trait Anxiety Inventory (T-STAI) [27]. The
trait-anxiety scale is one of two subscales of the full form
STAI developed by Spielberger to measure anxiety in
adults. It is one of the most frequently used measures of
anxiety in applied psychology research and has been shown
to be a reliable and sensitive measure of anxiety. Subjects
were asked to fill the T-STAI before and after the Stroop test.
When undergoing the Stroop test, all of the signals are being
recorded on the same machine where the Stroop test is
running [14]. A sample is generated per second during the
4-minute test, which yields a total number of 240 samples
per subject. One important aspect of (and probably the
biggest issue relating to) biosignals is the baseline measure-
ment for each person. The proposed approach to solve this
problem is by normalizing the data, which are simple but
proved effective in allowing subject-independent agitation
detection. Clearly, this normalization requires the statistics
(mean, standard deviation) of the features used. However,
collecting the data to obtain the statistics is much easier than
establishing an agitation baseline for a subject. Therefore,
this approach results in the most subject-independent
agitation detection we are aware of.

If RTDi is the temperature at a certain point i and 
r is

the mean of the skin temperature defined by 
r ¼
1
n

Pn
i¼1 RTDi with standard deviation �r, then the normal-

ized value is:

RTDin ¼
RTDi � 
r

�r
:

If GSRi is the galvanic skin response at a point i, and the

mean of the GSR is given by 
g ¼ 1
n

Pn
i¼1 GSRi with

standard deviation �g, then the normalized value is:

GSRin ¼
GSRi � 
g

�g
:
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If IBIi is the IBI at a point i and the mean of the IBI is
given by 
b ¼ 1

n

Pn
i¼1 IBIi with standard deviation �b, then

the normalized value is:

IBIin ¼
IBIi � 
b

�b
:

After this normalization, it is possible to train the
learning algorithm with a group of subjects and test it on
subjects not belonging to that group.

To reduce the noise, and knowing that the correlation
between two consecutive measurements in time of the
above feature is very high, it is very useful to apply
exponential decay on the normalized data. Although this is
not an advanced filtering technique, the ultimate aim of this
paper is to develop a low power portable device that the
subject will carry and will alert caregivers whenever the
patient is agitated. In addition, since the results were not
very sensitive to the filtering method used, this type of
primitive filtering was chosen. If Xn represents any of the
above normalized features, then

Xniþ1
¼ �Xni þ ð1� �ÞXniþ1:

Choosing � to be close to 1 will make the data more
dependent on the previous measures, and choosing � close
to 0 will make the data less dependent on the previous
measure. The value chosen for this experiment is � ¼ 0:8.

4.2 Transitional Agitation Detection Results

Data from subjects that demonstrated stress using the T-STAI
analysis were used to evaluate the accuracy of the detection
algorithms. Each patient had 240 samples (RTD, GSR, IBI)
taken synchronously corresponding to the three Stroop test
slides. In total, 58 subjects were tested. The agitation level
(AGL) of a sample X of subject s taken at time t is defined
as follows:

AGLðXsðtÞÞ ¼
1; Non Agitated State;
2; Transitional State;
3; Agitated State:

8<
: ð19Þ

Also, define AvgAGLðtÞ to be the expected value of the
agitation level, over all subjects, at time t:

AvgAGLðtÞ ¼ Es½AGLðXsðtÞÞ�: ð20Þ

The proposed algorithm is tested using the K-fold cross-
validation technique. The 58 subjects are subdivided into
groups of two to form 29 folds. In general, the cross-
validation is carried out by taking 28 folds as the training set
and the remaining fold as the validation set. The final result
is the average of all K permutations. To illustrate the
robustness of our architecture against overfitting, which, in
general, is caused by the lack of training points, only one fold
is taken as the training set and the remaining 28 folds are
taken as the validation set. The expectation in (22) represents
an ensemble average over all 28 permutations. In order to
choose the best parameter 1=�2 for the architecture, a subset
of 12 subjects is considered. A 6-Fold cross-validation was
conducted, where 1=�2 was varied over a large range. The
value of 1=�2 that gave the best average performance over
the 12 subjects was chosen in the larger 29-fold cross-
validation procedure. It is worth noting that, in all cross
validation procedures for traditional and multilevel SVM, no
training points were used for testing. This is a standard
procedure to avoid biasing the accuracy of the testing phase.
Fig. 4 shows AvgAGLðtÞ, where the points corresponding to
t < 100s have an average agitation level of 1.2, while the
points corresponding to 100s � t � 140 have an average
agitation level of 2.2, and the points corresponding to t >
140s have an average of 2.99. The gray area corresponds to a
standard deviation around the average. As expected, the
subject is relaxed for the first 100 points then goes into a
transitional phase of around 40 seconds, and then remains
agitated for the remainder of the experiment. It is also
notable that for the first 20 seconds, the agitation level is
decreasing, which shows that some subjects were not totally
relaxed at the beginning of the experiment. Note also that,
although it is not clear from Fig. 4, a limited number of
subjects exhibits a decrease in the agitation level during the
last 10 samples. This could show that some subjects got
familiar with the noncongruent segments and started
relaxing before the end of the experiment. Fig. 5 shows the
average percentage of subjects over all 29-fold permutations
that were classified in the transitional phase at time “t.” This
figure demonstrates that indeed the points inside the
interval ½100s; 140s� are in the majority of class 2, and hence
their average is due to their correct classification rather than
to the fact that they were equally misclassified between 1 and
3 and hence averaged to 2.2. A standard assumption in the
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literature is that the subject would remain calm ðAGL ¼ 1Þ
during the first 120 samples (colored blocks and congruent
blocks), and then get agitated ðAGL ¼ 3Þ for the remaining
120 samples (noncongruent blocks). This assumption was
used [13], [15], [16] as the definition of the ground truth to
compute the accuracy of agitation detection of one SVM. To
be consistent with the literature, this assumption will hold in
the next section, where it is shown that the proposed
multilevel SVM outperforms the single SVM.

4.3 Multilevel SVM Results

In this section, only two classes exist:

�1; 1 � t � 120;
1; 120 < t � 240:

�
ð21Þ

For this experiment, the same 58 subjects were considered.
In order to test this architecture, the K-fold cross-validation
technique is also used. The 58 subjects are subdivided into
groups of two, which yields 29 folds. In order to show the
robustness of this architecture against overfitting, only one
fold is taken for training and the remaining folds are used
for validation. From the training fold, a subset X of
80 triplets (ST, GSR, IBI) is chosen randomly. X is used to
train a traditional single SVM using the gaussian kernel
function as discussed earlier, and all the samples of the
remaining 28 folds were used to test its accuracy. The same
set X was split, using the method described in Section 3.5.2,
into two sets X1 and X2. SVM-1 was trained using X1 while
SVM-2 was trained using X2, and the samples from the
remaining 28 folds were used in the testing procedure as
also described in Section 3.5.2. The comparison of the
performance of a single SVM with the performance of the
multilevel SVM is fair because, in both cases, the same
training set X is used. Note that for the normal SVM and the
multilevel architecture, the parameter 1=�2 has to be
determined. For this purpose, a reduced set of 12 subjects
was used. A 6-fold cross-validation was carried out on both
normal and multilevel architectures over 50 different values
of 1=�2. The values of 1=�2 that yielded the highest
accuracies for both architectures are used for the 29-fold
validation procedure. The average accuracy for the pro-
posed architecture reached 91.4 percent, with a standard
deviation of 1.71 percent, while the average accuracy for the
normal SVM reached 90.9 percent, with a standard
deviation of 1.94 percent. The best accuracy for the normal
SVM was reached with 1=�2 ¼ 50, while the best accuracy
for the proposed architecture was reached using 1=�2 ¼ 2. It
was shown that the value of 1=�2 is an indicator of the VC
dimension: If a machine is trained using a higher value of
1=�2 than another machine, then its VC dimension is also
higher [23]. And since the generalization error is bounded
by an increasing function of the VC dimension, as shown in
(11), then our architecture is more likely to generalize better
over unseen new data. The reported accuracy cannot be
compared with accuracies reported in the literature because
the algorithms were tested on different data sets and using
different validation techniques.

Since this system is motivated by a medical application,
there is an important trade-off between usability and
detection. However, from a practical perspective, having
an accuracy in the 90 percent range is acceptable as this
system is intended to assist caregivers and not replace them
completely. So it is expected that when there is an alert, a

caregiver would conduct a more thorough diagnosis. It is the
usability of the system for such an application that
motivated the subject-independent method. Since it is very
challenging to obtain a baseline by reducing the measure-
ments required as described previously, the system applica-
tion became more practical.

5 CONCLUSION

This paper presented a decision confidence measure and
two new SVM architectures, which were applied to
agitation detection and agitation transition detection. It
was shown that, under no constraints on the subject and
using three vital signs, the transitional phase was detected
with high accuracy using this new confidence measure. It
was also shown that, using the confidence measure, it is
possible to build an architecture that yields higher accuracy
than the traditional SVM, while using the same training set.
An accuracy of 91.4 percent was achieved, in comparison
with 90.9 percent for the traditional SVM.

ACKNOWLEDGMENTS

The authors thank Dr. Cheryl Riley-Doucet and Dr. Debatosh
Debnath from Oakland University for providing the data
used in this research. This research was funded by the
American University of Beirut University Research Board,
Dar Al-Handassah (Shair & Partners) Research Fund, and the
Rathman (Kadifa) Fund.

REFERENCES

[1] “DSM-IV: Diagnostic and Statistical Manual of Mental Disorders,”
Am. Psychiatric Assoc. Task Force on DSM-IV, 1994.

[2] W. He, M. Sengupta, V. Velkoff, and K. DeBarros, “US Census
Bureau, Current Population Reports, P23-209, 65+ in the United
States: 2005,” US Govt. Printing Office, 2005.

[3] A. Rosenblatt, “The Art of Managing Dementia in the Elderly,”
Cleveland Clinic J. Medicine, vol. 72, no. 3, p. 3, 2005.

[4] R. Picard, E. Vyzas, and J. Healey, “Toward Machine Emotional
Intelligence: Analysis of Affective Physiological State,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 10,
pp. 1175-1191, Oct. 2001.

[5] W. Liao, W. Zhang, Z. Zhu, and Q. Ji, “A Real-Time Human Stress
Monitoring System Using Dynamic Bayesian Network,” Proc. 2005
IEEE CS Conf. Computer Vision and Pattern Recognition, p. 70, June
2005.

[6] P. Ekman, “Expression and the Nature of Emotion,” Approaches to
Emotion, vol. 3, pp. 319-343, Lawrence Erlbaum Assoc., 1984.

[7] L. Li and J. Chen, “Emotion Recognition Using Physiological
Signals,” Advances in Artificial Reality and Tele-Existence, pp. 437-
446, Springer, 2006.

[8] K. Kim, S. Bang, and S. Kim, “Emotion Recognition System Using
Short-Term Monitoring of Physiological Signals,” Medical and
Biological Eng. and Computing, vol. 42, no. 3, pp. 419-427, 2004.

[9] M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, D. Hazry,
and I. Zunaidi, “Time-Frequency Analysis of EEG Signals for
Human Emotion Detection,” Proc. Fourth Kuala Lumpur Int’l Conf.
Biomedical Eng., pp. 262-265, 2008.

[10] V. Fook, P. Thang, T. Htwe, Q. Qiang, A. Wai, M. Jayachandran, J.
Biswas, and P. Yap, “Automated Recognition of Complex
Agitation Behavior of Dementia Patients Using Video Camera,”
Proc. Ninth Int’l Conf. e-Health Networking, Application and Services,
pp. 68-73, 2007.

[11] L. Wenhui, Z. Weihong, Z. Zhiwei, and Q. Ji, “A Real-Time
Human Stress Monitoring System Using Dynamic Bayesian
Network,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, June 2005.

SAKR ET AL.: SUPPORT VECTOR MACHINES TO DEFINE AND DETECT AGITATION TRANSITION 107



[12] T. Tamura, T. Fujimoto, and T. Togawa, “Quantitative Assessment
of Behavior in Dementia Patients by Continuous Physical Activity
Monitoring,” Proc. 19th Ann. Int’l Conf. IEEE Eng. in Medicine and
Biology Soc., vol. 3, pp. 999-1002, 1997.

[13] J. Zhai and A. Barreto, “Stress Recognition Using Non-Invasive
Technology,” Proc. 19th Int’l Florida Artificial Intelligence Research
Soc. Conf., pp. 395-400, 2006.

[14] J. Stroop, “Studies of Interference in Serial Verbal Reactions,”
J. Experimental Psychology, vol. 18, no. 6, pp. 643-662, 1935.

[15] G. Sakr, I. Elhajj, H. Huijer, C. Riley-Doucet, and D. Debnath,
“Subject Independent Agitation Detection,” Proc. IEEE/ASME Int’l
Conf. Advanced Intelligent Mechatronics, pp. 200-204, 2008.

[16] G. Sakr, I. Elhajj, and U. Wejinya, “Multi Level SVM for Subject
Independent Agitation Detection,” Proc. IEEE/ASME Int’l Conf.
Advanced Intelligent Mechatronics, pp. 538-543, 2009.

[17] R. Dishman, Y. Nakamura, M. Garcia, R. Thompson, A. Dunn, and
S. Blair, “Heart Rate Variability, Trait Anxiety, and Perceived
Stress among Physically Fit Men and Women,” Int’l J. Psychophy-
siology, vol. 37, no. 2, pp. 121-133, 2000.

[18] J. Lee, F. Pearce, A. Hibbs, R. Matthews, C. Morrissette, and R.
Walter, “Evaluation of a Capacitively-Coupled, Non-Contact
(through Clothing) Electrode or ECG Monitoring and Life Signs
Detection for the Objective Force Warfighter,” http://ftp.rta.
nato.int/public/Pubfulltext/RTO/MP/RTO-MP-HFM-109///
MP-HFM-109-25.pdf, 2010.

[19] M. Malik, J. Bigger, A. Camm, R. Kleiger, A. Malliani, A. Moss,
and P. Schwartz, “Heart Rate Variability: Standards of Measure-
ment, Physiological Interpretation, and Clinical Use,” European
Heart J., vol. 17, no. 3, p. 354, 1996.

[20] D. Murray, “What Is Heart Rate Variability; and Is It Blunted by
Tumor Necrosis Factor?” Chest, vol. 123, no. 3, p. 664, 2003.

[21] A. Kistler, C. Mariauzouls, and K. von Berlepsch, “Fingertip
Temperature as an Indicator for Sympathetic Responses,” Int’l J.
Psychophysiology, vol. 29, no. 1, pp. 35-41, 1998.

[22] K. Pearson, “LIII. On Lines and Planes of Closest Fit to Systems of
Points in Space,” Philosophical Magazine, Series 6, vol. 2, no. 11,
pp. 559-572, 1901.

[23] V. Kecman, Learning and Soft Computing: Support Vector Machines,
Neural Networks, and Fuzzy Logic Models. MIT Press, 2001.

[24] N. Aronszajn, Introduction to the Theory of Hilbert Spaces. Oklahoma
Reasearch [sic] Foundation, 1950.

[25] V. Vapnik, Statistical Learning Theory. Wiley, 1998.
[26] C. Burges, “A Tutorial on Support Vector Machines for Pattern

Recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2,
pp. 121-167, 1998.

[27] C. Spielberger, R. Gorsuch, and L. Edward, STAI Manual for the
State-Trait Anxiety Inventory (“Self-Evaluation Questionnaire”). Con-
sulting Psychologists Press, 1970.

George E. Sakr received the BE degree (with
distinction) in electrical and electronics engineer-
ing from Lebanese University, Roumieh, in 2005,
and the MS degree in networking and telecom-
munications from the joint program between
Lebanese University, the Universite de Versailles
St. Quentin, the Ecole Nationale Superieure des
Telecommunications (ENST, France), Universite
Pierre et Marie Curie (UPMC, France), and the
Institut National de la Recherche Scientifique

(INRS Telecommunications, Canada), in 2006. He is currently working
toward the PhD degree in the Department of Electrical and Computer
Engineering at the American University of Beirut. His research interests
include artificial intelligence, statistical learning theory, manifolds, human
machine interfacing, and medical systems. He is a member of the IEEE.

Imad H. Elhajj received the BE degree (with
distinction) in computer and communication
engineering from the American University of
Beirut (AUB), Lebanon, in 1997, and the MS and
the PhD degrees in electrical engineering from
Michigan State University, East Lansing, in 1999
and 2002, respectively. He is currently an
assistant professor with the Department of
Electrical and Computer Engineering, AUB. His
research interests include instrumentation, sen-

sor and computer networks, robotics, human machine interfacing,
multimedia networking, and medical systems. He is a senior member of
the IEEE and the secretary for the IEEE Lebanon Section.

Huda Abou-Saad Huijer received the BSN
degree from the American University of Beirut,
Lebanon, in 1971, and the master’s and PhD
degrees from the University of Florida in 1975
and 1977, respectively. She is currently the
director of Hariri School of Nursing at the
American University of Beirut. She has served
in different capacities on a large number of
national and international organizations such as
the International Association for the Study of

Pain, the European Association for Palliative Care, and the European
Academy of Nursing Science; of the latter, she was vice-president. In
Lebanon, she is currently the president-elect of the Lebanese Society for
the Study of Pain, and an active member of the Lebanese Pain Relief
and Palliative Care Working Group. Her research interests include pain
management and palliative care in children and adults.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

108 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 1, NO. 2, JULY-DECEMBER 2010


