THE BACTEROISTATIC EFFECTS OF SULFONAMIDE-UREA COMPOUNDS

by Aida Djanian.

A thesis presented for the degree of Master of Science in the American University of Beirut.
TABLE OF CONTENTS

Introduction 1 - 20
Methods 21 - 32
Results 33 - 44
Discussion 45 - 48
Summary 49 - 50
Acknowledgement 50 - 51
Bibliography 52 - 75
ABSTRACT OF THE THESIS ON THE BACTERIOSTATIC EFFECT OF
SULFONAMIDE-UREA COMPOUNDS.

The antibacterial properties of three new urea-sulfonamide compounds have been studied in vitro against the colon-typhoid-dysentery group, two strains of Staphylococcus aureus, two strains of Streptococcus viridans, four gram-positive spore bearing rods, three strains of Corynebacterium diphtheriae, and on Mycobacterium tuberculosis var. hominis.

Different techniques were used for the study of the various organisms. The method of Strauss and Dingle (186, 187) was used for testing the bacteriostatic effect of the sulfonamide-urea compounds upon Escherichia coli and Staphylococcus aureus. Other gram-negative rods, and the three strains of Corynebacterium diphtheriae were grown in veal infusion broth to which powdered crystals of the drugs to be tested were added so that the final concentration was 10 mg per 100 c.c. Sixteen to twenty hour broth cultures of all the organisms were used; 2 c.c. of the control and broth containing the various drugs 0.1 c.c. of varying broth dilutions were added. To test the bacteriostatic effect of the compounds upon Streptococcus viridans the same method as used in testing the bacteriostatic effect upon the gram-negative rods was used except the drug concentrations were variable and the inoculum constant.

Youmans (225) synthetic medium, containing 10 mg per 100 c.c. of the drugs to be tested, was used in testing the effect of the compounds upon Mycobacterium tuberculosis. For inoculation 0.1 c.c. volumes containing the desired amounts, 0.4, 0.2, and 0.1 mg of tubercle bacilli were used. The method of Spray (183) was used to test the bacteriostatic effect of the compounds on Clostridium welchii, Cl.tetani, Cl.sporogenes and Cl.chauvei.

The results showed that sulfanilamido-urea and 4-homo-sulfanilamido-urea were superior to sulfathiazole in their inhibitory actions upon Clostridium welchii, Cl.tetani, Cl.sporogenes, and Cl.chauvei in concentrations of 15 mg. per cent. Sulfanilamido-thioureia showed much less activity than sulfathiazole in veal infusion broth.
A strain of *Streptococcus viridans* was completely inhibited by 10 mg. per cent sulfathiazole in veal infusion broth; sulfanilamide-urea and sulfanilamido-thiourea exerted a partial inhibition under the same experimental conditions but were completely bacteriostatic in concentrations of 100 mg. per cent. 4-homo-sulfanilamido-urea had no inhibitory effect. Sulfathiazole in concentrations of 10 mg per cent exerted a marked inhibitory action on the growth of virulent human *Mycobacterium tuberculosis* in a synthetic medium. Sulfanilamido-urea, sulfanilamido-thiourea and 4-homo-sulfanilamido-urea under similar conditions gave negative results. Sulfathiazole had a definite and marked bacteriostatic effect on one of the three strains of *Corynebacterium diphtheriae* tested, provided appropriate inocula were used. The sulfonamide urea compounds exhibited exhibited it irregularly and to a lesser degree than sulfathiazole. Two strains of *Staphylococcus aureus* exhibited no alteration of their growth in a synthetic medium containing the sulfonamides.

Sulfanilamide and sulfaguanidine, in concentrations of 3-5 mg. per cent were bacteriostatic upon *Escherichia coli* in a synthetic medium. This action was not shared by the sulfanamide-urea compounds. The sulfonamide were without effect on the various other gram-negative rods despite varying the size of inocula; sulfathiazole exerted slight bacteriostatic effect on some of the gram-negative rod.

The bactericidal effect of fresh, whole blood upon streptococci reported by Todd, was confirmed.

Suspensions of a virulent strain of *Mycobacterium tuberculosis* rapidly produced surface and subsurface growth when inoculated into the synthetic medium of Youman.

The thesis also includes a review on the in vitro testing of sulfonamide drugs.
INTRODUCTION

Para-ami-no-sulfonamide was synthesised by Gelmo working in 1908, but its bactericidal power was not discovered until 1913 by Eisenberg. In 1932 Metzsch and Klarer synthesised the original prontosil (the hydrochloride of 4-sulfanilamide-2'-4'-diamino-azobenzene), a red powder 0.25% soluble in water, and in the same year Demagk pointed out the strepto-
cidal action of certain azo dyes in infected animals, and showed the
high therapeutic activity of prontosil. Levaditi and Vaisman (1935)
quickly confirmed these results. The next important finding, was that
of Trefouel, Mitti and Bovet (1935), who noticed, following the observa-
tion of Heidelberger and Jacobs (1919) on the bactericidal action in
vitro of sulfanilamide-benzene-azo-hydrocupreines, that azo-compounds not
containing a sulfonamide group attached to one of the benzene nuclei
were inactive.

Over a thousand derivatives of sulfanilamide have been introduced
and some have been tried both clinically and experimentally. Some of
the derivatives tested have proved better than sulfanilamide against
certain diseases, for example, in infections due to staphylococci
sulfathiazole and sulfapyridine are much more effective than sulfanil-
amide (20, 21, 23, 154). Following a report by Whitby (206), that
sulfapyridine is a much more effective agent than sulfanilamide in the
treatment of experimental pneumococcus infections in mice, numerous
articles appeared on the use of this drug both experimentally and
clinically (14, 42, 166, 153, 68). Sulfapyridine like sulfanilamide
penetrates readily all the tissues and the body fluids but sulfap-
pyridine is usually present in higher concentration in the liver than
in other tissues (120). Sulfamylguanidine is therapeutically active against various bacteria but unlike sulfanilamide is poorly absorbed from the intestinal tract (122), allowing the attainment of a high concentration of drug in the intestinal tract and a low concentration in the blood and tissues. This property makes a drug useful in the treatment of bacterial infections which are mainly or entirely localised in the intestine.

Most papers on the action of these drugs have been concerned with studies in vitro, and since recent papers show a surprising parallel between resistance in vitro and unsuccessful clinical treatment, the in vitro tests seem to be of great value in the preliminary testing of new compounds. Cohn (39) demonstrated correlation between clinical and in vitro reactions of gonococcus strains to sulfathiazole. Spink and Vivino (182) showed that sulfonamide resistant staphylococci gave results which agreed in vitro and in vivo. Griffiths (69) tested the effect of sulfathiazole, sulfadiazine and sulfanilamide on cholera vibrio and got similar results; with the latter compound it was inhibition of growth in vitro and effective treatment of mice previously inoculated with lethal doses of cholera vibrio.

If a drug is effective bactericidal and bacteriostatic agent in the test tube, it may or may not be effective in vivo, but it cannot be expected that a drug ineffective against a certain bacterium in vitro will prove successful in combating a disease caused by that organism (124). Long and Bliss (110) expressed the belief that there is an appreciable degree of correlation but that parallelism ceases when relative susceptibilities of different organisms in cultures and their
reactions in the animal body are compared. Spray's (183) experiments showed that *Clostridium welchi* which is most effectively controlled in the animal body is least inhibited in the test tube; *Clostridium sordelli* which is least successfully controlled in the animal body was among the species most effectively inhibited in the test tubes, probably due to sulfonamides inhibiting substances produced by the organisms themselves. Reed and Orr (157, 158, 159) observed the fact that species like *Clostridium welchi* which produce large amounts of inhibitor and against which the sulfonamides exert slight in vitro bacteriostatic action are effectively controlled in the animal body by the same sulfanilamides; or that species like *Clostridium sordelli* which produces little inhibitor and against which sulfonamides exert marked bacteriostatic action in vitro are much less effectively controlled in the animal body by the same sulfonamides.

There is great variation in the effectiveness in vitro of the sulfonamide drugs on a large number of strains of a single species of bacteria. Poston and Orgain (151) working with *Streptococcus viridans* demonstrated that out of a total of twenty-five strains, the growth of seventeen was inhibited by one or more drugs. Three were inhibited by one or more drugs. Three were inhibited by all seven drugs, while seven strains were not inhibited by any of the drugs, and the remaining fourteen showed considerable variation. Schmidt and his co-workers made extensive studies of the response of different types and strains of pneumococci to sulfapyridine (156, 157, 158). These investigators, working with strains of types I, II and III found that sulfapyridine was uniformly more effective against experimental infections with type I than against infections with type III, and that infections with
certain type II strains responded as type I, whereas infections with other strains of type II responded as type III. They suggested that these differences in type and strain response are related to differences in antigenicity. Certain strains of pneumococci are extremely resistant to sulfa pyridine therapy and others are extremely susceptible, in addition there appears to be as much variability in therapeutic response as may occur between strains of certain types as between types (123).

Marked differences are seen in the reports of different investigators as to the effect of these drugs on bacteria in vitro; some workers find no effect, others a definite bactericidal effect. These differences are due mainly to differences in the conditions of the experiments. Much research has been expended upon the effect on sulfonamide activity of certain environmental conditions which are easily varied. It has been observed by numerous investigators (33, 89, 104, 77) that the inhibition is directly related to sulfonamide concentration, this relationship may not be strictly linear over a large range of concentrations (77). In the presence of a constant amount of sulfonamide, the inhibition of bacterial growth is inversely related to the number of organisms present, (33, 89, 104, 112, 127), that is, as the size of inoculum is increased a greater amount of sulfonamide is required to produce the same inhibition. In a small number of cases inoculum has little effect (9, 115). Mitti et al (142) claimed that the importance of inoculum size varies with the organism, being of less importance with meningococci and gonococci than with streptococci and pneumococci, and of no significance whatsoever in growth inhibition of the mold Aspergillus niger. Sulfonamide action is definitely influenced by the pH of the environment; this was first noted by those interested in sulfonamide
therapy of urinary tract infections, where the pH can be controlled within limits. Helmhols et al (76) showed that sulfonamide activity in urine is increased as the pH is raised, e.g., from the range 5.5-6 to 7.5-7.8. Middlebrook et al (129) showed that sultamidase's bacteriostatic activity increases from pH 5.5 to pH 8.5 whereas sulfadiazine appears more active at the former pH of the medium.

The bacteriostatic and bactericidal action in vitro of the sulfonamides is definitely increased by an increase in temperature in vitro (100, 102, 207) and in vivo in gonococcal infections of the chicks chorionallantoic membrane and in human gonococcal infections where artificial fever is used together with drug therapy (, 7). The effect of temperature is probably due to enzyme inhibition (102, 100). The most exact experiments were those on streptococci reported by White (207), who found that at 30° C., sulfanilamide concentrations less than 0.058 M (1000 mg%) are inactive at 36° C., concentrations less than 0.0058 M (100 mg%) are inactive, and at 39° C., concentrations of 0.00058 M (10 mg%) or less are bactericidal.

The fifth environmental factor affecting the activity of sulfonamides is the composition of the medium. A good example of the role played by the medium is the observation by MacLeod and Mirick (114), that properly prepared fresh calf-liver infusion has no sulfonamide-counteracting action, and to produce the same results in plain broth and peptone broth, twenty to forty times as much sulfonamide is required. It has been stated by many investigators that the poorer the medium used for the growth of the organisms, the more effective is the action of the sulfanilamide; in other words if the medium is not optimal for growth, sulfonamide action is more pronounced (114, 182, 60, 93). Wald and
Mitchell (203) believed that peptone does not interfere with the bactericidal effectiveness of sulfonamides but peptone furnishes a richer medium for growth. Although this assumption probably contains a great deal of truth, it does not completely explain the effect of changes in the medium on the activity of sulfanilamide. Wolf and Julius (209) showed that streptococci in broth medium, where growth is extremely slow, were not influenced by sulfanilamide, but a change to a blood broth medium, where better growth occurs, resulted in bacteriostasis. They concluded that a certain rapidity of growth was essential for the action of sulfonamides. Harris (72) showed that the physical properties of a medium are of surpassing importance, and that a medium may appear to be actually bactericidal even when other factors are favorable for growth.

The finding that substances which inhibit sulfonamide action can be obtained from bacteria (53, 65, 184, 150), peptones, various animal tissues (114, 184, 211, 108), red blood cells and urine of the mouse (60), and yeast (211, 205); the statement that purified preparations, while keeping their ant sulfanilamide potency have no effect upon growth, and the extreme variability in the amounts of sulfonamide-antagonists in various media, makes comparison of results in vitro practically impossible (110, 104, 114, 186, 187, 188). However, with the proper selection of media, careful checking of the concentration of drug in the medium, controlling the size of the inoculum and the temperature of incubation, in vitro tests have proved themselves very useful and have contributed to the advances achieved in chemotherapy.

Numerous experiments have been published on in vitro studies on the action of chemotherapeutic agents. The literature has been reviewed
by Marshall (123, 121), Findlay (49), and Henry (77).

The action of sulfonamides on the viruses has been investigated. The viruses for which there is adequate evidence indicative of a therapeutic response to sulfonamides are: trachoma (160), lymphogranuloma venereum (80, 173), inclusion blennorhea and the virus of psittacosis (77). Other virus infections have been investigated, some have been reported as susceptible to sulfonamide therapy; however, most of these claims have been disputed; others, such as the smallpox and yellow fever virus, have been found to be unaffected.

Protozoa have been tested by numerous investigators. Amoeba, paramaecia, trichomonads (63), toxoplasma (164), Leishmania tropica (174), and Endamoeba histolytica (161), have been reported to be inhibited by sulfonamides. The effect of various sulfonamides against the malaria parasite in vitro and vivo has been investigated (36, 37, 38, 173, 119). Reports of the effectiveness of sulfonamides on human malaria have been somewhat conflicting. There have been many uncertain or unfavorable and many favorable reports with regard to the therapeutic effectiveness of sulfonamides against human tertian malaria (Plasmodium vivax), quartan malaria (P. malariae), and autumnal malaria (P. falciparum). It appears in general that the sulfonamides are more effective against the more virulent plasmodia (77). Sulfonamides have been found repeatedly to be effective against the virulent P. knowlesi infection in rhesus monkeys, while they exert no effect on the milder P. cynomolgi and P. inui infections (36, 37, 38).

Other cells, hydra, mesostoma (flatworm), stenostoma (rotifer), Dero (annelid) (97, 47), chick embryo heart tissue culture, bone marrow, various yeasts (91), (Torulopsis, Torula, and Saccharomyces), various
fungi (Trichophyton gypseum) (103), Trichophyton purpureum (45), Blastomyces dermatitidis (144), and higher plants (algae) (35), a diatom (206), tomato roots (24), and pisum roots (118), are said to be inhibited by sulfonamides.

Numerous in vitro studies of the effect of sulfonamide drugs against different species of bacteria have been made. These have had two purposes: an elucidation of the mode of action of these drugs (105), 202, 210, 176, 74, 134, 137, 66, 192, 22) and their appraisal for clinical use.

The comparative action in vitro of sulfonamides on representative organisms of the cholera-typhoid-dysentery group has been studied. Long (117), Lawrence (97), and Laby (106), found that sulfadiazine was equal to, or, slightly superior to sulfanilamide and to sulfapyridine in its bacteriostatic action upon the cholera-typhoid-dysentery group. Marshall, et al (122), showed that a new sulfonamide, sulfaethylguanidine, compared favorably with the in vitro effects of sulfanilamide and sulfapyridine upon micro-organisms, particularly those of the cholera-typhoid-dysentery group, the effect of sulfanilamide, sulfapyridine and sulfaethylguanidine were further studied by Lawrence upon additional organisms of the group mentioned and compared with sulfadiazine and sodiumsulfadiazine under corresponding experimental conditions (98). Rammalkamp and Jewall (155) compared the action in vitro of sulfanilamide, sulfapyridine, sulfameththiazole, and sulfadiazine on the representative organisms of the typhoid-dysentery group and concluded that sulfadiazine was only slightly superior to sulfameththiazole and sulfapyridine, under their experimental conditions. The anti-
bacterial effect of thiazole compounds against Salmonella enteritidis was studied by Kair, Shaler, and Jones (132); these authors also studied the use of a synthetic medium in the study of antibacterial effect of sulfathiazole. Hill (79), compared the action of sulfanilamide, sulfapyridine and sulfathiazole in a urine medium, Straus and Finland (189) demonstrated the bactericidal and bacteriostatic activity in vitro of sulfadiazine and sulfathiazole on the colono-dysentery-typhoid group of organisms in a simple medium. Schweinburg and Yetwin (190) tested the in vitro action of sulfamethazine as compared with that of sulfadiazine and sulfonamides, and concluded that sulfamethazine in vitro is by far a more effective bactericidal and bacteriostatic agent against Escherichia typhosa, Escherichia coli, and the salmonella varieties than the other sulfonamides examined. Böehmer tested the in vitro action of various sulfanilamide derivatives on Shigella dysenteriae and showed that sulfathiazole and sulfadiazine gave the best results while sulfaguanidine was relatively ineffective (13). The inhibitory effect of sodium sulfathiazole on Shigella paradysenteriae (Flexner) and Salmonella pullorum in the developing chick embryo was shown by Wel and Gall (199).

The effect of sulfonamide drugs on Vibrio cholerae has been investigated; sulfathiazole, sulfadiazine and sulfanilamide (69), and sulfanilylguanidine (10), inhibited the growth of Vibrio cholerae in vitro.

Sulfonamides are known to be excreted in the urine and their effect on bacterial infections of the urogenital tract, especially coli has received considerable attention both clinically and experimentally, (186, 97, 189, 10, 89, 79, 141, 125, 11, 40).
Sulfonamide drugs have had an extensive trial, both in vitro and in vivo, against the tubercle bacillus. In vitro tests have given very variable results. Ballon and Gueron (2, 3, 4) showed that under specific conditions and in certain concentrations, sulfanilamide exerts an inhibitory effect upon the growth of virulent human tubercle bacilli in vitro. Follis (54), who employed liquid media and large inocula failed to observe any appreciable bacteriostatic effect of either sulfanilamide or its acetyl derivative upon the growth of tubercle bacilli (var. hominis). Ballon and Gueron (5) in a later communication found that sulfathiazole and sulfamethy1thiazole exerted a pronounced inhibitory effect upon the growth of virulent human tubercle bacilli on solid media, whereas sulfapyridine and sulfanilamide under similar conditions exerted a less striking inhibitory effect; this inhibitory effect was not observed when a liquid medium was employed. Working with liquid media Rist (160a) showed that 4,4'-diamino-diphenyl-sulfone in dilution of 1:10,000 and 1:100,000 exerted a marked inhibitory effect upon the growth of human tubercle bacilli in vitro. Rist (160a) further showed that sulfonamides in a concentration of 1:500 exerted complete inhibition, and even in a concentration of 1:1000 a definite retarding effect upon the growth of tubercle bacilli was also shown in vitro. Giroux (61) confirmed these latter findings. Sulfapyridine was shown to possess more potent mycobactericidal properties in vitro than sulfanilamide (16). Green (64), further, showed sulfapyridine, in concentrations of 1:1000 and 1:2000 inhibited the growth of tubercle bacilli. The comparative action in vitro of sulfonamides on the tubercle bacilli was further investigated by Miller (135) and Youman (212). They
confirmed that sulfathiazole showed bacteriostasis in a concentration of 5 mg. per cent. Sulfanilamide had little effect on the tubercule bacilli under similar experimental conditions.

A large series of benzophenone derivatives, and other ketones (58), new derivatives of diamino-diphenyl-sulfone and naphthaquinones (107) were examined for tuberculostatic action in vitro. Of the compounds tested, the dichloro derivatives in the 2,2' and 2,4' positions showed a greater degree of inhibition against the tubercule bacilli than all the compounds investigated (58). Of the fifteen naphthaquinone compounds tested against the tubercule bacillus in vitro, only 3-sulfanilyl-1,4-naphthaquinone showed sufficient promise for further investigation (107).

The sulfonamide group of drugs were first shown to have a specific action on the streptococci. The use of mice infected with highly virulent culture of a group A-beta hemolytic streptococcus is still the most common method used for testing the chemotherapeutic activity of new compounds. The effect of the sulfonamide group of drugs has now been tested on almost every kind of streptococcus both clinically and experimentally (207, 108, 203, 139, 140, 151, 127, 177, 195, 146, 175, 166, 179, 59, 198, 18, 99, 67, 19, 113).

Most of the studies in vitro have been carried out with sulfanilamide and streptococci, (127, 201, 195, 108, 124, 25, 99, 18, 139, 203).

In vitro tests on the bactericidal effect of sulfanilamide and its derivatives on the hemolytic streptococci has given encouraging results (127, 207, 195, 108, 124). The most extensive papers are those of Marshall (124). He made a qualitative comparison of the in vitro
and in vivo activity on Beta-hemolytic-streptococci of one-hundred and twenty-six compounds consisting of sulfanilamide derivatives, sulfonamides, sulfoxs, sulfoxides and sulfides. White and Parker (207) showed the bactericidal action upon thirty-six strains of beta-hemolytic streptococci with 20 mg per cent sulfanilamide in vitro.

Hamilton (71), determined the bacteriostatic effect of sulfathiazole (5 mg. per cent) on streptococci of Lancefield's Groups A, B, C, D, G and Streptococcus faecalis. Streptococci of Lancefield's Group A, B, C and G were inhibited whereas Group D streptococci and Streptococcus faecalis were resistant to sulfathiazole in concentrations of 5 mg per cent.

The bacteriostatic effect of sulfonamide drugs upon the non-hemolytic streptococci has given variable results (151, 99, 18, 67, 127). Poston and Orgain (151) compared the bacteriostatic effect of the sulfonamide drugs on the growth of twenty-five strains of Streptococcus viridans. A great variation in the effectiveness of these drugs against various strains and in the susceptibility of each strain to the various drugs has been noted. Neter (139) inhibited the growth of Streptococcus faecalis with sulfanilamide by retarding the growth of the hemolytic enterococci with the addition of 6.5-7 per cent sodium chloride or maltose 0.25 per cent. Wadd and Mitchell (263), support the findings of Neter (130); these authors showed the sulfanilamide in moderate concentrations is bactericidal only for streptococci which are multiplying slowly. Long and Bliss (18), showed that sulfanilamide in concentrations of 1:10,000 markedly inhibited the growth of the alpha-hemolytic streptococcus. However, Britton (25), tested three strains of Streptococcus viridans and found that two were unaffected by a concentration of sulfanilamide as high as 1:500 and the third strain
was inhibited in its growth only when the concentration of sulfanalamide was 1:1000.

Experimental endocarditis by traumatizing the endocardium, or by the injection of particulate matter, in addition to bacterial inoculations, have been shown possible by Welch et al (201). Rosenow (163) and Horder (82), produced endocardial vegetations by simply infecting intravenously cultures of *Streptococcus viridans*. MacNeal et al (116) demonstrated that it is possible to transmit endocarditis leuca of man to the rabbit by repeated intravenous infections of pure cultures. Mulher and Kinsella (131) stated that they established bacterial endocarditis with persistent bacteremia in dogs, using a culture of non-hemolytic streptococcus. The objective of these experiments was to help resolve the problem of therapy in subacute bacterial endocarditis. However, the majority of reports concerning the efficacy of sulfanalamide are extremely pessimistic (131, 129, 179, 165).

Experiments in vitro have been made with pneumococcus. (19, 51, 52, 127, 113, 122, 120, 116a, 114, 170, 96). Mitti, Bovet and Depierre (143) found that sulfanalamide had an inhibitory effect on pneumococcus. White and Britton (26) noted a distinct but variable bactericidal effect on Type I, II, and Group IV pneumococci. Fleming (52) reported that sulfapyridine in concentrations of from 1:250,000 to 1:8,000 inhibited the development of large inocula of pneumococci in defibrinated human blood. It was shown by Finland et al (50, 51) that sulfanalamide and sulfapyridine in the concentrations ordinarily attained in therapy exerted a marked bacteriostatic action on Type III pneumococci when added to human blood in vitro. Long and Bliss
(113) further showed sulfathiazole to be as effective a bacteriostatic agent as sulfapyridine in broth cultures on Type I and II pneumococci. The bacteriostatic actions of three thiazole derivatives of sulfanilamide, namely 2-sulfanilamidothiazole (sulfathiazole), 2-sulfanilamido-4-methylthiazole (sulfamethythiazole and 2-sulfanilamido-4-phenylthiazole (sulfaphthiazole) upon pneumococcus types I, II and III were studied. These compounds were found to be superior to sulfanilamide and sulfapyridine in their inhibitory actions in concentrations as low as 5 mg per cent (96). MacLeod (114) determined quantitatively the bacteriostatic effect of the sulfonamide drugs on pneumococci. The comparative in vitro action of sulfapyrazine (2-sulfanilamidopyrazine), sulfapyridine, sulfathiazole and sulfadiazine on pneumococci has been investigated by Schmidt et al (170). These same authors have made the most extensive studies on the response of different types and strains of pneumococci to sulfapyridine (168, 169) and have shown that sulfanilamide has considerable therapeutic value in pneumococcus infections in mice. They found that the therapeutic efficiency of sulfanilamide varied with the type of pneumococcus used as the infecting agent.

Studies in vitro have been carried out with sulfanamides and staphylococci (154, 156, 19, 113, 176, 83, 12, 187). Spink (178) studied the bactericidal effect of sulfanilamide upon fourteen strains of staphylococci, of which twelve belonged to the pathogenic (S. aureus), and seven were non-pathogenic (S. albus). All the strains were inhibited with a drug concentrations of 50 mg. per cent when suspended in urine. In a later communication Spink (180), in a comparative study on the antibacterial action of sulfanilamide and the
sodium salts of sulfapyridine, sulfathiazole and sulfadiazine obtained the greatest inhibition of growth with sulfathiazole and with sulfadiazine next. Several communications dealing with the activity of sulfathiazole and certain of its derivatives on staphylococci have appeared (99, 96, 78, 8, 76, 154). Harrell and Brown (78) found much greater in vitro bacteriostatic activity of sulfamethyldiazole than of sulfathiazole against Staphylococcus aureus. Lawrence (95, 96) found that sulfamethyldiazole had a greater bacteriostatic activity than had sulfathiazole. Barlow and Hamburger (8) reported results which indicated little, if any, greater activity of sulfamethyldiazole as compared with sulfathiazole. Bake et al (154), studied the activity of sulfathiazole and sulfamethyldiazole against Staphylococcus aureus as compared to that of sulfapyridine. The relationship of activity was found to be sulfamethyldiazole > sulfathiazole > sulfapyridine. Conflicting reports have appeared on the neutralization of staphylococcal toxins by sulfanilamide and allied compounds (12, 29, 30, 31). Carpenter and his coworkers (29, 30, 31) have reported an antitoxic effect of sulfanilamide and its derivatives on toxins formed by staphylococci and other bacteria. Bayliss (12) and Lewaditi et al (92), reported that the toxic manifestation of staphylococci are not inactivated in vitro by sulfanilamide and its derivatives.

The effect of sulfonamide drugs on the meningococci have been investigated. Favorable experimental and clinical effects of sulfanilamide have been reported with this organism (171, 117, 172, 152, 132, 84, 43). Studies were made on the effect of sulfanilamides upon the growth of meningococci in vitro. Haeryraith (117) showed the bacteriostatic effect of sulfonamide at a dilution of 1:60,000 and Schneerson
reported strong inhibitory effect of sulfanilamide and
drugs on gonococci in vitro.

The bacteriocstatic action of sulfonamide drugs on gonococci
have been studied. In vitro tests (117, 76, 204) indicate inhibitory
effect of sulfanilamides upon the growth of gonococci. Bang and Betay
(6) determined the therapeutic efficacy of sulfathiazole and sulf-
diazine upon gonococcal infections of the chorioallantoic membrane
of the chick. Observations on gonococcal infections of mice have
shown that they are readily curable by sulfanilamide and by a number
of sulfonamide derivatives (93).

In vitro bacteriocstatic action of sulfonamides against the gas
gangrene clostridia have been reported. Spurr (183), found the growth
of Clostridium tetani, Cl. novyi and Cl. septicum to be inhibited by sulfan-
alamide and disulfonamide in low concentrations, but Cl. tertium,
Cl. sporogenes and Cl. histolyticum to be inhibited only by high concentra-
tions of disulfonamides. Reed and Orr (185) confirmed these latter
findings. These authors showed that sulfanilamide, sulfapyridine,
sulfaguanidine, sulfadiazine and sulfathiazole are highly bacteriocstatic
for Cl. sordellii, Cl. septicum, Cl. carnis, a little less bacteriocstatic
for Cl. novyi and Cl. histolyticum; and, only slightly bacteriocstatic
for Cl. sporogenes and Cl. welchii. The in vitro antibacterial effects
of sulfanilamidoindazole upon Cl. welchii, Cl. tetani, Cl. histolyticum,
and Cl. cedaminum have been successful (157, 158, 159).

The effect in vitro of sulfanilamide, sulfapyridine and sulfah-
thiazole on Corynebacterium diptheriae has been determined (147).
These experiments confirmed and extended the observations made by Mitti
(142). Not only were the growth of these organisms retarded but
marked bactericidal action on *C. diphteriae* was observed. Of the
three drugs tested sulfathiazole was active on the largest number
of strains studied, and sulfanilamide least.

In vitro experiments on the bacteriostatic action of
sulfanilamide on *Brucella abortus* are contradictory. Francis
(57), believes that *Br. abortus* is more susceptible to the action
of sulfanilamide in vitro than *Streptococcus pyogenes* under the
same conditions; while Britton (27) reports that sulfanilamide
and other allied compounds show no bacteriostatic action on
Br. abortus, Br. suis and *Br. melitensis*. On a later communi-
cation Hemmoun and Riddleson (70) showed the bacteriostatic effect
of sulfapyridine on *Brucella*. The Brucellas tested were not
inhibited by sulfanilamide-indazoles (99).

Most experiments dealing with the action of sulfanil-
amide and its derivatives in vitro were performed with patho-
genic bacteria. However, experiments in vitro have been made
upon aerobic spore-bearing rods (162), three of the subtilis-
mesentericus group, and, one of the *B. mycoides*. Sulfanilamide
inhibited spore formation and induced degenerative changes in
the bacilli of subtilis-mesentericus-mycoides group.

The anti-bacterial properties of urea have been de-
scribed by Peju and Rajat (148), Foulger and Foshay (56),
Holder and Mackay (81) have reported a favorable response of
infected wounds treated with mixtures of urea and sulfon-
amides. Tsuchiza, Tenenberg, Clark and Strakasch (196, 195,
197), showed that urea inhibited para-aminobenzoic acid and methionine, substances which antagonize the action of sulfonamides. These findings could not be confirmed by Kirby (37), but have been confirmed by Lee, Epstein and Foley (101).

It was shown by several investigators (193, 101, 196, 200, 37), that urea in conjunction with sulfonamides displays greater growth inhibitory effect than the later alone on *Bacterium coli* in vitro. Baker (46) claimed to have cured a case of meningitis due to *Bacterium coli*, which failed to respond to sulfadiazine and penicillin, after receiving two grams of sulfadiazine and thirty grams of urea introduced into the stomach every four hours. Three strains of sulfathiazole resistant staphylococci were shown to be susceptible to urea-sodium sulfathiazole combinations whereas they were unaffected by these two agents used separately (197). Other studies (200) have shown that urea exerted both a bacteriostatic and bactericidal action, depending on the concentration used, and was active against Gram negative bacteria, *Proteus vulgaris*, *Escherichia typhosa*, *Pseudomonas pyocyaneus*, *Salmonella schottmulleri*, *S. paratyphingeriae* (Flexner) and *Bacterium coli*; and also to a lesser degree against Gram positive bacteria, *Staphylococcus aureus*, pneumococcus and hemolytic streptococcus.

The bacteriostatic and bactericidal action of urea upon the tubercle bacilli in vitro has been shown by Symmers and Kirk (191) and Carmine (44). Meyer (126), made a comparative study of ten compounds including sulfanilamide, sulfapyridine.
sulfathiazole, thio-urea, phenylthiourea, sulfanil-amido-thiourea, (p-H$_2$N$_2$H$_2$SO$_2$NH$_2$H$_2$), phenyl-sulfan-amido-thiourea (PhSO$_2$NH$_2$H$_2$) and sulfanilamido-ethyl-isothiourea (H$_2$N$_2$H$_2$SO$_2$NH(NH)SE$^+$) on the tubercle bacilli in vitro. He found that the avian bacilli was less resistant than the human variety, that sulfanilamide and sulfapyridine possessed little activity, sulfathiazol was six to thirty times as active as sulfanilamide and sulfapyridine; thio-urea was less active than sulfanilamide and sulfapyridine. Sulfanil-amido-ethyl-isothiourea was inactive; while phenyl-sulfonamido-thiourea and sulfanil-amido-thiourea were very active.

The advantages of urea are: its relative non-toxicity either in the pure state or in saturated solution; its harmlessness to the tissues; it acts as a marked solvent action on necrotic tissue, pus and debris, and thus chemically debrides contaminated wounds and mechanically remove inhibitors; it lyses bacteria (126, 148, 101, 197, 193); deodorizes foul smelling wounds rapidly and renders sulfonamides more soluble. Urea has been shown to have a marked beneficial effect in the treatment of septic wounds (44).

In view of these findings it seemed profitable to study the antibacterial properties of compounds containing sulfanilamide and urea, and sulfanilamide and thiourea.

The following compounds have been examined for their antibacterial properties using in vitro techniques :-
(1) \[
\text{NH}_2 \hspace{1cm} \text{SO}_2\text{NHIMINO}-\text{NH}_2 \]
\[\text{Sulfanilamidothiourea}\]

(2) \[
\text{NH}_2 \hspace{1cm} \text{SO}_2\text{NHIMINO}-\text{NH}_2 \]
\[\text{Sulfanilamidourea}\]

(3) \[
\text{CH}_2\text{NH}_2\text{HCL} \hspace{1cm} \text{SO}_2\text{NHIMINO}-\text{NH}_2 \]
\[4\text{-Hemo-Sulfanilamidourea-Hydrochloride}\]
METHOD.

Different techniques were used for the study of the various organisms and these will be detailed under the organism concerned.

Escherichia coli.

Three strains of Escherichia coli isolated from the urine of patients with pyelitis were maintained by monthly transplants on agar slants and stored in the refrigerator (2°C.). The organisms showed typical cultural reactions, as defined by Bergey (224).

Basal medium of Fildes (211) modified by Strauss, Dingle and Finland (156) was prepared as follows:

\[
\begin{align*}
\text{NaCl} & \quad 1.0 \text{ g.} \\
\text{KH}_2\text{PO}_4 & \quad 4.0 \text{ g.} \\
\text{(NH}_4\text{)}_2\text{SO}_4 & \quad 0.5 \text{ g.} \\
\text{NH}_4\text{Cl} & \quad 0.5 \text{ g.} \\
\text{FeSO}_4 \cdot \text{(NH}_4\text{)}_2\text{SO}_4 \cdot 6\text{H}_2\text{O} & \quad 0.02 \text{ g.} \\
\text{MgSO}_4 \cdot 7\text{H}_2\text{O} & \quad 0.04 \text{ g.} \\
\text{Distilled water } & \quad 300 \text{ c.c.}
\end{align*}
\]

The pH was adjusted to 7.2 with 1 N sodium hydroxide and the mixture heated in the Arnold steamer for 30 minutes. A granular precipitate, probably magnesium and iron salts, was removed after cooling by filtration through paper. The volume of the clear filtrate was adjusted to 900 c.c. with distilled water. The medium was distributed in 4.7 c.c. amounts into sterile test tubes and autoclaved at a pressure of 15 pounds.
for 10 minutes.

Since the basal medium supported growth poorly or not at all, glucose and nicotinic acid solutions were added. Dextrose was made up in 25 per cent solution in distilled water and sterilized by Berkefeld filtration, the final concentration of dextrose in the medium was 0.25 per cent. A 5 per cent solution of nicotinic acid in distilled water was prepared; 5.8 g of sodium carbonate was added to the solution to dissolve the nicotinic acid and sterilized by Berkefeld filtration. The final concentration in the medium was 0.1 μg per cent.

All solutions prepared separately were tested for sterility and added aseptically. Dextrose, nicotinic acid, the sulfanamide drugs and other test substances were added to the basal medium in 0.1 c.c. volumes in concentrations adjusted so that the appropriate amount of each substance was present in a final volume of 5 c.c. of medium.

Sulfanilamide, sulfaguanidine, sulfanilamido-urea, sulfanilamido-thiourea and sulfanyl-benzyl-hydrazide were dissolved in distilled water and heated in the Arnold steamer for 20 minutes before use. To account for the loss of water in the Arnold steamer the solutions were made in sterile volumetric flasks; after sterilization sterile water was added up to the mark. The stock solutions were 0.3 per cent from which the following lower concentrations were prepared by diluting these stock solutions with appropriate amounts of sterile distilled water. The concentrations used were: 0.25, 0.2, 0.15, 0.1 and 0.050
per cent. To inoculate the medium with organisms a small loopful of organisms was transferred from an agar slant to infusion broth and incubated for 6-10 hours at 37°C. The organisms were centrifuged at 2500rpm for thirty minutes, washed twice in the basal medium, to prevent the transfer of substances present in the agar or broth in which the organisms were grown, and then diluted in basal medium so that an inoculum of 0.1 c.c. added to 5 c.c. of test medium gave 2500 organisms per c.c. of medium. Hopkins tube method was used for counting.

Incubation was carried out at 37°C for five days; daily, the test tubes were examined for visible turbidity. Smears were prepared from the tubes showing cloudiness and stained with Gram's method in order to confirm growth and to rule out the possibility of contamination.

OTHER GRAM NEGATIVE BACTERIA.

The cultures were stored at 15-20°C on plain agar slants and were transferred two times in the veal infusion broth before testing. The broth media containing the sulfonamides prepared by adding powdered crystals of the drugs to be tested (sulfathiazole, sulfanilamide-sulfa, sulfanilamide-thio-sulfa, and 4-homo-sulfanilamide-sulfa hydrochloride) to sterile veal infusion broth so that the final concentration was 10 mg per 100 c.c. The medium was then sterilized by heating at 56°C for two hours. The chemical broth media were distributed in 5 c.c. amounts into sterile test tubes and incubated for 24 hours at 37°C to test for sterility.

Sixteen hour broth cultures of all organisms were used. To 5 c.c. of the control and broth containing the various drugs 0.1 c.c. of 1:100, 1:200 and 1:500 broth dilution of the sixteen hour culture was added. Incubation was carried out at 37°C for 24 hours. Growth was estimated by the appearance of visible turbidity in the medium. Smears were made and stained with Gram's method from the test tubes showing cloudiness in order to confirm growth and to rule out the possibility of contamination.

Streptococcus viridans.

Two strains of *Streptococcus viridans* isolated from the blood of patients with subacute bacterial endocarditis were maintained by weekly transplants on Avery’s culture media and stored in the refrigerator (20°C). The organisms showed typical cultural reactions as defined by Bergey (224).

Veal infusion broth containing 0.15 per cent dextrose, and the pH adjusted to 7.5 with 1 N sodium hydroxide was autoclaved.
at 10 lb for 10 minutes; upon cooling 0.1 per cent sterile horse serum was added and the medium was distributed in 4.4 c.c. amounts into sterile test tubes.

A series of dilutions of each of the compounds, (sulfathiazole, sulfanilamidourea, sulfanilamidothiourea, and 4-homo-sulfanilamidourea), varying from 1:100 to 1:10,000 were prepared in sterile distilled water. The aqueous drug solutions were sterilized by boiling in a water bath for 30 minutes, and added to tubes containing 4.4 c.c. of nutrient medium in 0.5 c.c. amounts while still hot before recrystallizing upon cooling. The final drug concentrations were one tenth the original concentrations of the aqueous solutions.

Each tube was inoculated with 0.1 c.c. of a 1:200 broth dilution of a 24-hour culture of test organisms, the two strains of *Streptococcus viridans*. Two test tubes containing 5 c.c. of each concentration of drug and two control tubes containing no drug were used for each strain of *Streptococcus viridans* tested.

The inoculated test media, with controls, were incubated at 37°C and observed for visible growth after 24 hours. Growth was estimated by visible turbidity in the medium. Smears were made and stained with Gram's method from the test tubes showing cloudiness in order to confirm growth and to rule out the possibility of contamination.

The second method employed to test the bacteriostatic effect of sulfathiazole, 4-homo-sulfanilamido-urea, sulfanilamido-urea and sulfanilamido-thiourea upon the same strains of
Streptococcus viridans was that of Todd (224), modified by Hamilton (153), with a few further modifications.

Fresh, whole, human and sheep blood was used for the suspending medium. The optimum dilution, that is, the dilution that gives a colony count of approximately 200-300 colonies was determined. This was obtained as follows: A 24-hour culture of the organisms to be tested was diluted 1:10, 1:100, 1:1000, up to 1:100,000,000 in Difco-tryptose-phosphate broth. 0.1 c.c. and 0.050 c.c. of each dilution was put in 5 c.c. of fresh, whole citrated human blood and allowed to incubate at 37°C for one hour and a half. At the end of this time the blood-streptococci mixture was thoroughly mixed and 1 c.c. transferred to a sterile Petri-dish and 10 c.c. of melted nutrient agar added. In a later experiment 1 c.c., 0.5 c.c. and 0.1 c.c. was transferred at the end of 1, 3, 6, 9 and 24 hours and pour plates prepared in the same way. The plates were incubated at 37°C for 24 hours and the number of colonies were counted.

The drugs were prepared in the following way: A 1:650 dilution of each drug was made in sterile distilled water; this was sterilized by bringing the solution to boiling point.

Five c.c. of fresh whole blood was used for each dilution of drug to be tested, and 5 c.c. was used for the untreated control. 0.1 c.c. of the optimum dilution of the organisms was added to each of the tubes and the tubes were then incubated at 37°C for one hour. At the end of an hour the drug solution was added in amounts to give the final concentrations desired. (example, 0.1 c.c.
of the 1:650 gives a concentration of 6 mg per cent when added to 5 c.c. of blood.

Plates were poured as soon as the drug was added. A plate was also poured from the control tube containing no drug, and again 6 and 24 hours after the drug had been added. These plates were made by placing 1 c.c. of the blood-streptococci mixture in a Petri dish and mixing with 10 c.c. of melted nutrient agar.

Colony counts were made on each set of plates (start plates, 6 hour plates and 24 hour plates), at 24 and 48 hours after they were poured.

Staphylococcus aureus.

The Oxford strain and a recently isolated strain of *Staphylococcus aureus* from a case of osteomyelitis were the test organisms. The organisms were coagulase positive. Stored on glucose agar slants in the refrigerator (2°C).

The basal medium, described by Knight (222), and modified by Strauss, Dingle and Finland (43), was prepared. Two ingredients were not available, therefore were prepared in the Biochemistry Department as follows:

The cystine hydrochloride was prepared as follows: 50 mg of cystine (March), was dissolved in 1 c.c. of 1 N HCL in a 10 c.c. volumetric flask and sterile distilled water was added up to the mark. Casein hydrolysate was prepared from Casein (Rochester), Muller's method (223), was employed. To 20 gm of casein 34 c.c. HgSO₄ and 120 c.c. distilled water were added and boiled for 18 hours. The percentage of nitrogen in the solution was 0.3959 per cent.
The basal medium consisted of:

\[\text{KH}_2\text{PO}_4 \] \hspace{1cm} 4.5 \text{ g.} \\
Cystine hydrochloride \hspace{1cm} 0.050 \text{ g.} \\
Casein hydrolysate \hspace{0.5cm} 10. \text{ g. (238 c.c.)} \\
\text{Distilled water to} \hspace{1cm} 700. \text{ c.c.}

The solution was obtained by boiling. The pH was adjusted to 7.3 with 1 N NaOH and the volume brought up to 900 c.c. with distilled water. The solution was distributed in 4.5 c.c. amounts in sterile test tubes and autoclaved at a pressure of 15 pounds for 10 minutes. The following were prepared in 100 c.c. volumetric flasks and sterilized by Seitz filtration and added aseptically, each in a volume of 0.1 c.c.

Glucose \hspace{1cm} 12.5 \text{ per cent.} \\
\text{FeSO}_4 \cdot (\text{NH}_4)_2\text{SO}_4 \cdot 6\text{H}_2\text{O} \hspace{1cm} \text{N/250 in N/25HCl.} \\
\text{MgSO}_4 \cdot 7\text{H}_2\text{O} \hspace{1cm} 0.2 \text{ per cent.} \\
\text{Tryptophane} \hspace{1cm} 0.1 \text{ per cent.} \\
\text{Thiamin Chloride} \hspace{1cm} 0.005 \text{ per cent.} \\
\text{Nicotinamide} \hspace{1cm} 0.005 \text{ per cent.}

Sulfanilamide, sulfaguanidine, sulfanilamido-urea and sulfanilamido-thiourea were dissolved in distilled water and heated in the Arnold steamer for 20 minutes before use. From the stock solutions (0.3 per cent), the following lower concentrations were prepared by diluting with appropriate amounts of sterile distilled water. The concentrations used were: 0.25, 0.2, 0.15, 0.1 and 0.050 per cent. The drug solutions were added aseptically in 0.1 c.c. amounts.
Three test tubes containing 5 c.c. of each concentration of drug and three control tubes containing no drug were used for each strain of *Staphylococcus aureus* tested. To prepare the inoculum a small loopful of organisms were transferred to infusion broth, incubated for 6 to 10 hours and centrifuged at 2500 rpm for 30 minutes. The sediment was resuspended and washed twice in basal medium and diluted so that 12500 organisms was contained in a volume of 0.1 c.c. (Hopkin's tube method). The organisms were added to the 5 c.c. drug-medium in 0.1 c.c. amounts.

The tubes were incubated at 37°C. Clouding of the medium was taken to represent growth. Smears were made and stained by Gram's method from the tubes showing turbidity, to confirm the presence of growth and to rule out contamination.

Myobacterium tuberculosis.

Two virulent human strains were employed. One of the strains was imported from Turkey, the other was a local strain isolated from the sputum of a tuberculosis patient. The organisms were stored on Congo red medium at room temperature (15 to 20°C).

A synthetic medium described by Youmans (225), was prepared as follows:

- Asparagin...............2.5 g.
- Monopotassium phosphate...2.5 g.
- Magnesium citrate.........1.25 g.
- Magnesium sulfate..........0.25 g.
- Glycerol..................40 c.c.
- Redistilled water from glass to 500 c.c.
The pH was adjusted to 7.0 with 40 per cent sodium hydroxide and the mixture was autoclaved. The precipitate was removed, after cooling, by filtration through paper and autoclaved a second time at a pressure of 15 pounds for 10 minutes. The medium was distributed in 100 c.c. amounts into sterile 250 c.c. flasks aseptically, the powdered crystals of the drugs to be tested, sulfathiazole, sulfanilamide-urea, sulfanilamide-thiourea and 4-homo-sulfanilamide-urea hydrochloride, were added so that the final concentration was 10 mg per 100 c.c. The media were then sterilized by heating at 56°C. for two hours. The synthetic media with the sulfonamides were distributed in 2 c.c. amounts into sterile test tubes and incubated for 24 hours at 37°C to rule out the possibility of contamination.

Suspensions of tubercle bacilli were prepared by grinding aseptically 10-day surface growths from synthetic medium, third subculture, in an evaporating dish with the handle of an agate mortar, and suspending them in the synthetic medium. These suspensions were then standardized by centrifugation in Hopkin's vaccine tubes. For inoculation 0.1 c.c. volumes, containing the desired amounts, 0.4, 0.2 and 0.1 mg of tubercle bacilli were used. Two test tubes containing 2 c.c. of drug-synthetic media mixture and two control tubes containing no drug were used for each concentration of inoculum. The tubes were incubated at 37°C. for 10 days. Surface and sub-surface growth was observed, and smears were made and stained by Siehl-Neelsen's method to confirm growth of the organisms and to rule out the possibility of contamination.
Corynebacterium diphtheriae.

The two strains of *Corynebacterium diphtheriae* were local strains isolated from the throats of patients. The organisms were maintained by weekly transplants on Loeffler's media and stored at 10-16°C. The organisms showed typical cultural characteristics.

The drug-broth medium was prepared by adding powdered crystals of the drugs to be tested, sulfathiazole, sulfanilamidineourea, sulfanilamidothiocourea and 4-homo-sulfanilamidineourea, to sterile veal infusion broth so that the final concentration was 10 mg per cent. The medium was then sterilized by heating at 56°C. for 2 hours. The chemical broth media were distributed in 2 c.c. amounts into sterile test tubes.

Two test tubes containing 2 c.c. of each drug and one control tube containing no drug were used for each concentration of inoculum.

24 hour broth cultures of the organisms were used. To one set of 0.1 c.c. of the undiluted 24 hour broth culture was inoculated; to the second set of 0.1 c.c. of 1:10 dilution; and to a third set 0.1 c.c. of 1:100 of the 24 hour culture were added. Incubation was carried out at 37°C. for 48 hours. Growth was estimated by the appearance of visible turbidity in the medium. Smears were made and stained by Gram's method from the test tubes showing turbidity in order to confirm growth and to rule out the possibility of contamination.
Anaerobes.

The organisms were stock laboratory strains of *Clostridium welchi* (London), *Clostridium tetani* (U.S.A. 229), *Clostridium sporogenes* (Canadian 534), and *Clostridium chauvi* (London). The cultures were stored at 15–20°C. in chopped meat infusion broth covered with 1 cm. deep of sterile paraffin.

The tests were conducted in a simple medium composed of 1 per cent Difco-Tryptone, 1 per cent Difco-Neopeptone and 0.2 per cent dextrose in distilled water (128). The drugs, sulfathiazole, sulfadimido-urea, sulfadimido-thiourea and 4-homo-sulfanilamido-urea were added to the basal medium, so that the final concentration was 15 mg per cent, except for the 4-homo-sulfanilamido-urea which was 20 mg per cent. The medium was tubed in 5 cc. amounts, each covered with a sterile paraffin 1 cm. deep, and autoclaved at 15 lb. pressure for twenty minutes. The pH of the medium was 6.8.

24 hour cultures of the four organisms were used. To 5 cc. of the control and basal media containing the various drugs 0.1 cc. of 1:10, 1:100 and 1:1000 sterile distilled water dilutions of the 24 hour culture were added. Incubation was carried out at 37°C for 48 hours. Growth was estimated by the appearance of visible turbidity in the medium.
RESULTS

The results of the study on each type of organisms are detailed under the organisms concerned.

Escherichia Coli.

The minimal bacteriostatic concentration of sulfanilamide and sulfaguanidine were determined and compared with that of sulfanilamido-urea, sulfanilamido-thiocurea and sulfanylbensyl-hydraside with inocula of 2500 Escherichia coli per c.c. No clouding of the medium during five days of incubation meant complete bacteriostasis. Clouding occurring after three days incubation meant partial bacteriostasis. The drug free controls grew up in 12-24 hours.

The results of the first experiment with Escherichia coli are recorded in Table I. (See Table I). Sulfanilamide and Sulfaguanidine were completely bacteriostatic in a concentration of 3 mg. per cent with 2500 organisms per c.c. Sulfanilamido-urea and sulfanilamido-thiocurea were not bacteriostatic and showed no difference from the drug free controls.

The results of the second experiment are recorded in Table II. (See Table II).

Sulfanilamide and sulfaguanidine were completely bacteriostatic in a concentration of 5 mg per cent, sulfanilamido-urea, sulfanilamido-thiocurea and sulfanylbensyl-hydraside showed no bacteriostasis.

The experiment was repeated for the third time confirming the results in experiment one and two. The results of experiment three are summarized in Table III. (See Table III).
Table I. The Bacteriostatic Action of Sulfonamides on Escherichia coli.

<table>
<thead>
<tr>
<th>Bacteriostatic Agent</th>
<th>Concentration of Drug in mg per cc</th>
<th>Inoculum: 2500 Escherichia coli per cc of Medium</th>
<th>Hours of Incubation at 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>Sulfanilamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sulfanilguanidine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Sulfanilamide urea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sulfanilamide thio urea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Summary of 4 experiments given side by side.
++ , ++ , ++ , ++ , indicates abundant growth
- , indicates no growth.
<table>
<thead>
<tr>
<th>Bacteriostatic Agent</th>
<th>Conc. of Agent (mg per cc)</th>
<th>2500 Escherichia coli per cc of Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hours of Incubation at 37°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Sulfanilamide</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Sulfaguanidine</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Sulfathiazole</td>
<td>6</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Sulfapyridine</td>
<td>6</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

Summary of 5 experiments given side by side.
+ + + + + indicate abundance of growth
- indicates no growth.
Table III The Bacteriostatic Effect of Sulfonamides on *Escherichia coli*

<table>
<thead>
<tr>
<th>Bacteriostatic Agent</th>
<th>Concentration</th>
<th>24</th>
<th>48</th>
<th>72</th>
<th>96</th>
<th>120</th>
<th>144</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfanilamide</td>
<td>300 µg/ml</td>
<td>---</td>
<td>---</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Sulfonamidic</td>
<td>100 µg/ml</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>300 µg/ml</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sulfadiazine</td>
<td>100 µg/ml</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sulfamethazine</td>
<td>300 µg/ml</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sulfamethoxypyridazine</td>
<td>100 µg/ml</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Control</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

- Indicates no growth
+ Indicates slight growth
++ Indicates maximum growth.
Staphylococcus aureus.

The bacteriostatic action of sulfanilamide, sulfaguanidine, sulfanilamido-urea and sulfanilamido-thiourea was determined with 2500 staphylococci per c.c. The concentration of the sulfanilamide drugs was 6 mg per cent. The results of five repetitions are summarized in Table IV.

<table>
<thead>
<tr>
<th>Bacteriostatic Agent</th>
<th>Sulfanilamide</th>
<th>Sulfaguanidine</th>
<th>Sulfanilamido-urea</th>
<th>Sulfanilamido-thiourea</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>48 hours</td>
<td>96 hours</td>
<td>144 hours</td>
<td>216 hours</td>
<td>288 hours</td>
</tr>
<tr>
<td>Oxford Strain</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>++++</td>
<td>++++</td>
</tr>
<tr>
<td>A Local Strain</td>
<td>+++</td>
<td>++++</td>
<td>++++</td>
<td>++++</td>
<td>++++</td>
</tr>
</tbody>
</table>

Table IV. The Bacteriostatic Effect of Sulfanamides on S. aureus.

- indicates no growth
++ indicates slight to heavy growth
++++ indicates maximum growth.

The two strains used in the test were resistant to the action of all the drugs tested. The Oxford strain showed very little inhibition with sulfanilamide in the medium.
Streptococcus viridans.

The experiments using human and sheep blood as medium for testing the bacteriostatic action of the drugs against Streptococcus viridans were not successful probably because both human and sheep whole blood alone were capable of sterilizing small inocula of the organism. Results are summarized in Table V.

A second method, using as medium veal infusion broth containing 0.15 per cent dextrose and 0.1 per cent horse serum was employed. The results of eight tests against a strain of Streptococcus viridans isolated from a case of subacute bacterial endocarditis from the heart valve of an autopsy case, are presented in Table VI.

The results presented in Table VI indicate that sulfanilamide-urea and sulfanilamide-thiourea have a slight bacteriostatic action on the test organisms but their effect was less than that of sulfathiazole under the same experimental conditions. The 4-hydro-sulfanilamide-urea showed no bacteriostatic action.

Table V. The Influence of Leukocyte Activity on St. viridans.

<table>
<thead>
<tr>
<th>Incubation Time inBlood</th>
<th>Average Number of Colonies per Blood Platedilution of Suspension of Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>1:1,000</td>
</tr>
<tr>
<td>1</td>
<td>1232</td>
</tr>
<tr>
<td>3</td>
<td>903</td>
</tr>
<tr>
<td>6</td>
<td>245</td>
</tr>
<tr>
<td>9</td>
<td>109</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
</tr>
</tbody>
</table>

* A summary of ten experiments.
Table VI. The Comparative Bacteriostatic Action of Sulfanamides on Streptococcus viridans.

<table>
<thead>
<tr>
<th>Drug Dilation in the medium</th>
<th>Bacteriostatic Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sulfanilamide</td>
</tr>
<tr>
<td>100 mg 2</td>
<td>++ ++ ++</td>
</tr>
<tr>
<td>20 mg 2</td>
<td>++ ++ ++</td>
</tr>
<tr>
<td>10 mg 2</td>
<td>++ ++ ++</td>
</tr>
<tr>
<td>1 mg 2</td>
<td>++ ++ ++</td>
</tr>
</tbody>
</table>

Summary of 8 experiments, given side by side.
- indicates no growth
+ indicates growth.
Gram Negative Bacilli.

The test drugs showed no inhibition against the gram-negative bacilli tested. However, sulfathiazole was slightly bacteriostatic to some of the organisms tested.

The results of the test are shown in Table VII.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Drug Concentration in the Medium, 10mg per cent</th>
<th>Bacteriostatic Agent</th>
<th>Central No Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sulfanilamide</td>
<td>Sulfadiazine</td>
<td>Sulfadoxine</td>
</tr>
<tr>
<td>E.coli</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella paratyphi (American)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella paratyphi (Badal)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella paratyphi</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella enteritidis</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella schottmuelleri (USA)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella schottmuelleri (1929)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella inviscidum</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Shigella paracentric (Elmes)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Shigella dysenteriae (Elmes)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Shigella dysenteriae (Shigella)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Shigella paracentric (Shigella)</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella enteritidis (Bovine)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella enteritidis (Cattlery)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salmonella paratyphi (Cattlery)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vibrio comma</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Summary of three experiments:
- indicates no growth
+ indicates slight growth
+ + indicates growth
Tubercle bacilli.

The in vitro experiments with tubercle bacilli have shown that sulfanilamide-urea, sulfanilamide-thiocurea and 4-homo-sulfanilamide-urea have no inhibitory effect on a human strain of tubercle bacilli. Under similar conditions, sulfathiazole exerted definite bacteriostatic action on the organisms tested.

The lowest concentration necessary to completely inhibit subsurface growth was usually higher than that necessary to completely inhibit surface growth.

The size of inoculum used was important. With 5 mg tubercle bacilli per 10 c.c. medium there was no surface growth. On the other hand with 6 mg tubercle bacilli surface growth occurred. With 1 mg tubercle bacilli per 100 c.c. of medium, growth did not appear even after 26 days following inoculation.

Growth was evident by turbidity. When the tubes were shaken flaky masses of tubercle bacilli could be seen which settled to the bottom where they continued to grow. That the growth evident in the cultures actually consisted of tubercle bacilli is indicated by the fact that strains made from them showed only masses of acid-fast bacilli. (See Table VIII).
Table VIII. Surface and Subsurface Growth of Tubercle bacilli and the Action of Sulfonamides.

<table>
<thead>
<tr>
<th>Dilution of Bacteriostatic Agent</th>
<th>Drug Concentration in the Medium: 10 mg. per cent</th>
<th>Control No Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Drug</td>
<td>Sulfonamide</td>
</tr>
<tr>
<td>5 mg</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>6.15 mg.</td>
<td>++ S</td>
<td>++ S</td>
</tr>
<tr>
<td>10 mg</td>
<td>+++ S</td>
<td>+++ S</td>
</tr>
<tr>
<td>12.5 mg</td>
<td>++++ S</td>
<td>++++ S</td>
</tr>
<tr>
<td>20 mg</td>
<td>++++ S</td>
<td>++++ S</td>
</tr>
</tbody>
</table>

S: indicates surface growth
++, ++, ++, ++, indicates absence of subsurface growth.
- - , indicates no growth.

 Corynebacterium diphtheriae.

The relative growth inhibitory powers of sulfanilamidourea, sulfanilamidothiourea, 4-heno-sulfanilamido-urea and sulfathiazole on three strains of Corynebacterium diphtheriae were tested. The results are summarized in Table IX.
<table>
<thead>
<tr>
<th>Organism</th>
<th>Relation to the Organism</th>
<th>Drug Concentration in the Medium: 10 mg per cent</th>
<th>Control No Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Amphenicoleumamide</td>
<td>Sulfanilamido-urea</td>
</tr>
<tr>
<td>Strain (1)</td>
<td>Undiluted</td>
<td>+ + + +</td>
<td>+ + +</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Strain (2)</td>
<td>Undiluted</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td>Strain (3)</td>
<td>Undiluted</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>+ + +</td>
<td>+ + +</td>
</tr>
</tbody>
</table>

Summary of four experiments given side by side.

From table IX it appears that sulfathiazole is more effective in inhibiting the growth of Corynebacterium diphtheriae. However, the other compounds, sulfanilamido-urea, sulfanilamido-thiourea and 4-homo-sulfanilamido-urea exhibited slight bacteriostatic action on the two local strains, strain (2) and (3) in table IX, but not the third strain; strain (3) was received from Teheran.

Sulfanilamidourea and 4-homo-sulfanilamidourea were more effective in inhibiting the growth of Corynebacterium diphtheriae strain (2) and (3) than was sulfanilamidothiourea.
Anaerobes.

Experiments to determine the bacteriostatic action of 4-homo-sulfanilamidourea, sulfanilamido-thiourea, sulfanilamido-urea and sulfathiazole on Clostridium welchi, Clostridium tetani, Clostridium sporogenes and Clostridium chauvei were carried out.

The results in Table X indicate that 4-homo-sulfanilamidourea and sulfanilamidourea were slightly superior to sulfathiazole in inhibiting the growth of the anaerobes tested. Very little, if any inhibition was observed with sulfanilamidothiourea.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Dilution of the Organism</th>
<th>Drug Concentration</th>
<th>Bacteriostatic Agent</th>
<th>Control</th>
<th>4° Drag.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:10</td>
<td>---</td>
<td>---</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>---</td>
<td>---</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>1:1000</td>
<td>---</td>
<td>---</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>1:10000</td>
<td>---</td>
<td>---</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:1000</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:10000</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:1000</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:10000</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:1000</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:10000</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:10</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:100</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:1000</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>1:10000</td>
<td>---</td>
<td>+</td>
<td>+++</td>
<td>++</td>
</tr>
</tbody>
</table>

* indicates turbidity.
- indicates absence of turbidity.
DISCUSSION

The action of new sulfanilamides can be tested on bacteria against which the older drugs work satisfactorily. In this study the new drugs were tested against bacteria on which the older sulfanilamides exert little action, such as Staphylococcus aureus, Streptococcus viridans, Mycobacterium tuberculosis and the typhoid-dysentery group of bacilli, in addition to bacteria susceptible to the older drugs such as Escherichia coli spore bearing anaerobic bacilli and Corynebacterium diphtheriae.

To study the effect of the sulfonamide drugs upon bacteria in vitro, it is preferable to use a medium initially free of inhibitor, otherwise comparison of the results of different experiments with the same test organisms is not possible. The commonly used bacteriological media are not satisfactory since both the peptones and tissue infusion used in the preparation are known to vary from lot to lot in their content of inhibitor (46).

In this study a synthetic medium was employed in testing the bacteriostatic effect of the drugs upon Mycobacterium tuberculosis and Staphylococcus aureus. The experiments upon the gram-negative rods, the clostridia, the diphtheria bacillus and the non-hemolytic streptococci were performed in the common bacteriological media but the peptones and tissue infusion used in their preparation were from the same batch throughout the experiments so as to avoid variation in their content of inhibitor.

An imitation of a streptococcus bacteremia in vitro using fresh, whole, human and sheep blood was tried, but the results
failed to confirm the findings of Hamilton (43). Hamilton has used fresh whole blood for predicting the effect of drugs on streptococci, infecting the blood stream. The results of ten repetitions in this study agree in the main with those of Todd (22), that fresh, whole, human and sheep blood are capable of killing streptococci. The difference in the results in their response to the leukocytic activity of strains of Streptococcus viridans, the bactericidal action was slight in his experiments. Poston and Organ (24), showed a great variation in the in vitro effectiveness of the sulfanilamide drugs on twenty-five strains of Streptococcus viridans. They suggest that these differences in type and strain response are related to differences in antigenicity. Differences in antigenicity may explain the variation in their response to the action of leukocytes present in fresh, whole blood.

The older sulfanilamides exert little action on diseases caused by some gram-negative organisms and it has been shown, (209, 263, 299, 205, 262), that urea in conjunction with sulfanilamides displays greater inhibitory effect than the latter on Escherichia coli and other gram-negative bacilli (205), Proteus vulgaris, Eberthella typhosa, Salmonella schottmulleri and Salmonella paratyphosa (Flexner). In view of these findings it seemed advisable to test the action of 4-homo-sulfanilamidourea, sulfanilamidourea and Sulfanilamido-thiourea on a number of gram-negative rods including two strains of Pasteurella in vitro. The results were disappointing because the drugs had no bacterio-
static effect upon any of the gram-negative rods tested; with very small inocula there was some inhibition with sulfathiazole but none with the compounds containing sulfanilamide and urea. Sulfanilamide and sulfaguanidine were completely bacteriostatic in concentrations of 3-5 mg per cent upon the two strains of Escherichia coli in a synthetic medium, under the same experimental conditions the sulfanilamide-urea compounds showed no bacteriostatic action.

It was shown by Tsuchiya et al. (294), that three strains of resistant staphylococci were susceptible to urea-sodium GS sulfathiazole combinations whereas they were unaffected by these two agents used separately. The bacteriostatic activity of 4-hydroxy-sulfanilamidouracil, and sulfanilamidothiourea on two strains of sulfanilamide resistant staphylococci were studied and the results showed that the organisms were more resistant to the sulfanilamide-urea compounds than to sulfanilamide alone.

There are reports on the bacteriostatic and bactericidal action of urea on the Mycobacterium tuberculosis in vitro (295, 246), Mayer (297) has shown in a comparative study of ten compounds on the Tubercle bacilli in vitro that sulfanilamide urea compounds, namely phenyl-sulfonamidothiourea and sulfanil-amidothiourea, having one NH less than the compounds tested in this study, were very active; he also showed sulfathiazole to be six to thirty times as active as sulfanilamide and sulfapyridine. The in vitro experiments with Mycobacterium tuberculosis var. humanis showed that sulfanilamidouracil, sulfanilamido thiourea and 4-homo-sulfanilamidouracil had no inhibitory effect on the growth of the organisms. Sulfathiazole under similar conditions exerted a definite bacteriostatic action on Mycobacterium tuberculosis.
Why sulfanilamidothiocourea \((p\text{-H}_2\text{NO}_2\text{H}_4\text{SO}_2\text{NHCSN}_2) \) is very active according to Mayer while sulfanilamidothiocourea \((p\text{-H}_2\text{NO}_2\text{H}_4\text{SO}_2\text{NHCSN}_2) \) is not active is not obvious, but the fact that sulfathiazole was active in both experiments showed the environmental conditions in the two experiments to be similar and the inactivity of the compounds in this experiment was not due to the environmental conditions but most probably the compound itself.
SUMMARY.

The antibacterial properties of three new urea-sulfanilamide compounds have been studied in vitro against a variety of bacteria.

The studies were conducted firstly, to determine whether the drugs had any activity against various bacteria, and secondly, to compare their activities with common sulfonamides.

The results showed that sulfanilamido-urea and 4-homo-sulfanilamido-urea were superior to sulfathiazole in their inhibitory actions upon Clostridium welchii, Cl. tetani, Cl. sporogenes, and Cl. chauvei in concentrations of 15 mg per cent, Sulfanilamido-thiourea showed much less activity than sulfathiazole. A strain of Streptococcus viridans was completely inhibited by 10 mg per cent sulfatidiasole in real infusion broth, sulfanilamido-urea and sulfanilamido-thiourea exerted a partial inhibition under the same experimental conditions but were completely bacteriostatic in concentrations of 100 mg per cent. 4-homo-sulfanilamido-urea had no inhibitory effect. Sulfathiazole in concentrations of 10 mg per cent exerted a marked inhibitory action on the growth of virulent human Mycobacterium tuberculosis in a synthetic medium. Sulfanilamido-urea, sulfanilamido-thiourea and 4-homo-sulfanilamido-urea under similar conditions gave negative results. Sulfathiazole had a definite and marked bacteriostatic effect on one of the three strains of Corynebacterium diphtheriae tested, provided appropriate inocula were used. Sulfanilamido-urea, sulfanilamido-thiourea and 4-homo-sulfanilamido-urea exhibited irregularly and to a lesser degree than sulfathiazole.
Two strains of *Staphylococcus aureus* exhibited no alteration of their growth in a synthetic medium containing the sulfonamides and the sulfonamide-urea compounds. Sulfanilamide and sulfaguanidine, in concentrations of 3-5 mg per cent were bacteriostatic upon *Escherichia coli* in a synthetic medium. This action was not shared by the sulfonamide-urea compounds. The sulfonamides were without effect on *Salmonella typhosa*, *Salmonella paratyphi* and various other gram-negative rods despite varying the size of inocula; sulfathiazole exerted slight bacteriostatic effect on some of the gram-negative rods.

The bactericidal effect of fresh, whole blood upon streptococci reported by Todd, was confirmed.

Suspensions of a virulent strain of *Mycobacterium tuberculosis* rapidly produced surface and subsurface growth when inoculated into the synthetic medium of Youman.

ACKNOWLEDGMENTS.

I wish to express my sincere gratitude and indebtedness to Dr. Dicran Berberian, Professor of Bacteriology and Parasitology in the American University of Beirut, for his supervision throughout my graduate study, to Dr. Frank Alexander, Professor of Pharmacology, for his valuable suggestions given so generously, in connection with writing out the thesis; to Dr. Emray Dennis, ex-Professor
of Bacteriology for suggesting the problem; to Miss Eva Nemets for preparing the urea-sulfonamide compounds; to Mr. Artinian for photographing the tables and to the members of the Bacteriology laboratory for preparing some of the media and cleaning and sterilizing the equipment.
BIBLIOGRAPHY.

67. Green, F. H.: Experimental studies with sulfanilamide and other

70. Hamann, E. E., and Huddleston, L. F.: Effect on Brucella abortus in

71. Hamilton, T., and Hamilton, R. W.: Pathology and bacteriology of
 streptococcus endocarditis in relationship to sulfonamide
 18 Ref., 1944.

72. Harris, A. H.: Experiments with coccidion sacs on inhibition of
 9 Ref., 1945.

73. Harrison, F. F., Forrester, J. S., and Pate-Hugh, T.: Sulfapyridine
 in experimental tuberculosis. Amer. Rev. Tub., 42: 321-323,
 1 Table, 1940.

74. Hartmann, A. F., Barnette, H. L., Marshall, E. K., Sheffer, P. H.,
 and Wendell, W. B.: Panel Discussion on chemotherapy. Jour.
 Pediatrics, 16: 396-407, 1940.

 tuberculosis in guinea pigs. Amer. Rev. Tub., 42: 801-804,
 1940.

76. Holmsholt, H. F.: The bactericidal effect of sulfathiazole and
 sulfanethylthiazole in bacteria found in urinary in-
 1940.

