Abstract:
In inflammatory bowel disease, cells that infiltrate the mucosa regulate intestinal epithelial cell function partly through release of pro- and anti-inflammatory cytokines. The aim of this study is to evaluate the role of the anti-inflammatory cytokine, IL-10, on normal mouse intestinal epithelial cells (Mode-K) in the absence or presence of IL-1. Western blotting assays and immunocytochemistry were used to identify the presence of IL-1 and IL-10 receptors on Mode-K cells; and electrophoretic mobility shift assays were used to study the activation of NF-κB transcription factor. Stimulation of Mode-K cells with IL-1 or IL-10 did not modify IL-1 and IL-10 receptor expression levels. IL-1 induced the synthesis of the enzyme cyclooxygenase-2 (COX-2) through the activation and translocation of p65 subunit of NF-κB. Inhibition of translocated p65 binding to DNA, inhibited COX-2 production and induced apoptosis. IL-10 inhibited IL-1-induced effects on IKB-α and IKB-β proteins through stabilizing these proteins; subsequently causing inhibition of NF-κB translocation to the nucleus and any subsequent induction of COX-2. These data support a role for IL-10 in the regulation of IEC function under inflammatory conditions and the involvement of COX-2 in inhibiting apoptosis in mouse intestinal epithelial cells. © 2006 Elsevier Ltd. All rights reserved.