Abstract:
Worst-case upper bounds are derived on the minimum distance of parallel concatenated turbo codes, serially concatenated convolutional codes, repeat-accumulate codes, repeat-convolute codes, and generalizations of these codes obtained by allowing nonlinear and large-memory constituent codes. It is shown that parallel-concatenated turbo codes and repeat-convolute codes with sub-linear memory are asymptotically bad. It is also shown that depth-two serially concatenated codes with constant-memory outer codes and sublinear-memory inner codes are asymptotically bad. Most of these upper bounds hold even when the convolutional encoders are replaced by general finite-state automata encoders. In contrast, it is proven that depth-three serially concatenated codes obtained by concatenating a repetition code with two accumulator codes through random permutations can be asymptotically good. © 2009 IEEE.