dc.contributor.author |
Baly R. |
dc.contributor.author |
Hajj H. |
dc.contributor.editor |
|
dc.date |
2012 |
dc.date.accessioned |
2017-09-07T07:07:56Z |
dc.date.available |
2017-09-07T07:07:56Z |
dc.date.issued |
2012 |
dc.identifier |
10.1109/TSM.2012.2196058 |
dc.identifier.isbn |
|
dc.identifier.issn |
08946507 |
dc.identifier.uri |
http://hdl.handle.net/10938/11709 |
dc.description.abstract |
Increasing yield is a primary concern to integrated circuit manufacturing companies as it dictates the readiness of a new process for high volume manufacturing. In order to expedite the process of discovering yield issues, companies have started looking for ways to perform early prediction for such issues. This paper suggests the use of the support vector machines (SVMs) for early wafer classification. The choice of SVM is motivated by the model's ability to effectively classify multivariate, multimodal, and inseparable data points. This model uses multidimensional hyperplanes to separate and classify wafers into low-yield and high-yield classes. This paper includes a proposal for how the classification model can be applied for yield classification and how it can be adaptively updated in a manufacturing environment. We show how the values for the SVM parameters can be selected for best yield classification. Furthermore, performance evaluation is conducted on real manufacturing data, comparing the proposed SVM classifier to state of the art. Results show that in all cases, SVM consistently outperforms other methods with and without adaptive model updates. The experiments also show that all classifiers' performances depend on yield thresholds. It is also shown that the classification model can be built and executed using a reduced set without compromising its accuracy. © 1988-2012 IEEE. |
dc.format.extent |
|
dc.format.extent |
Pages: (373-383) |
dc.language |
English |
dc.publisher |
PISCATAWAY |
dc.relation.ispartof |
Publication Name: IEEE Transactions on Semiconductor Manufacturing; Publication Year: 2012; Volume: 25; no. 3; Pages: (373-383); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Wafer classification using support vector machines |
dc.type |
Article |
dc.contributor.affiliation |
Baly, R., Department of Electrical and Computer Engineering, American University of Beirut, Beirut 170225, Lebanon |
dc.contributor.affiliation |
Hajj, H., Department of Electrical and Computer Engineering, American University of Beirut, Beirut 170225, Lebanon |
dc.contributor.authorAddress |
Baly, R.; Department of Electrical and Computer Engineering, American University of Beirut, Beirut 170225, Lebanon; email: rgb15@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Electrical and Computer Engineering; |
dc.contributor.authorDepartment |
Electrical and Computer Engineering |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
rgb15@aub.edu.lb; hazem.hajj@aub.edu.lb |
dc.contributor.faculty |
Faculty of Engineering and Architecture |
dc.contributor.authorInitials |
Baly, R |
dc.contributor.authorInitials |
Hajj, H |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Baly, R (reprint author), Amer Univ Beirut, Dept Elect and Comp Engn, Beirut 170225, Lebanon. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
Abe S., 2005, SUPPORT VECTOR MACHI; Boser B, 1992, P 5 ANN WORKSH COMP, V5, P144, DOI DOI 10.1145-130385.130401; Botros Y, 2003, P SOC PHOTO-OPT INS, V5044, P121, DOI 10.1117-12.485311; Botros Y., 2003, P AEC APC S 4; Chapelle O, 2002, MACH LEARN, V46, P131, DOI 10.1023-A:1012450327387; Chin W. W., 2010, HDB PARTIAL LEAST SQ; Dasarathy B. V., 1991, NEAREST NEIGHBOR NN; Dupret Y., 2005, P IEEE SEM ADV SEM M, P118; Fayed A., 2003, P AEC APC S 25 SEP; Fenner J., 2000, P AEC APC S 12 SEP, VXII; Hajj H., 1998, P FLEX AUT INT MAN C; Hajj H., 2006, P AEC APC S 18, VXVIII; Hajj H, 2007, P SOC PHOTO-OPT INS, V6730, pQ7300, DOI 10.1117-12.746844; Hall M., 2000, P 17 INT C MACH LEAR, P359; Han J., 2001, DATA MINING CONCEPTS; He QP, 2008, P AMER CONTR CONF, P1606, DOI 10.1109-ACC.2008.4586721; He QP, 2007, IEEE T SEMICONDUCT M, V20, P345, DOI 10.1109-TSM.2007.907607; Khan AA, 2008, J PROCESS CONTR, V18, P961, DOI 10.1016-j.jprocont.2008.04.014; Kittler R., 2000, P INT C MOD AN SEM M, P270; Li TS, 2006, J INTELL MANUF, V17, P355, DOI 10.1007-s10845-005-0008-7; Lin TH, 2009, IEEE T SEMICONDUCT M, V22, P204, DOI 10.1109-TSM.2008.2011185; MACGREGOR JF, 1995, CONTROL ENG PRACT, V3, P403, DOI 10.1016-0967-0661(95)00014-L; May G. S., 2006, FUNDAMENTALS SEMICON; Moore G. E., 1975, P IEEE INT EL DEV M, P11; Moyne J, 2001, RUN TO RUN CONTROL S; Moyne JR, 2007, IEEE T SEMICONDUCT M, V20, P408, DOI 10.1109-TSM.2007.907617; Quinlan J. R., 1993, C4 5 PROGRAMS MACHIN; SPECHT DF, 1991, IEEE T NEURAL NETWOR, V2, P568, DOI 10.1109-72.97934; Wong A. Y., 1996, Proceedings. 1996 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (Cat. No.96TB100081), DOI 10.1109-DFTVS.1996.572012 |
dc.description.citedCount |
7 |
dc.description.citedTotWOSCount |
4 |
dc.description.citedWOSCount |
4 |
dc.format.extentCount |
11 |
dc.identifier.articleNo |
6189084 |
dc.identifier.coden |
ITSME |
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
84864646224 |
dc.identifier.url |
|
dc.publisher.address |
445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
IEEE Trans. Semicond. Manuf. |
dc.relation.ispartOfIssue |
3 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
IEEE Transactions on Semiconductor Manufacturing |
dc.relation.ispartofPubTitleAbbr |
IEEE Trans Semicond Manuf |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
25 |
dc.source.ID |
WOS:000314401300012 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Data models |
dc.subject.otherAuthKeyword |
data processing |
dc.subject.otherAuthKeyword |
multivariable systems |
dc.subject.otherAuthKeyword |
nonlinear systems |
dc.subject.otherAuthKeyword |
prediction methods |
dc.subject.otherAuthKeyword |
semiconductor defects |
dc.subject.otherAuthKeyword |
yield estimation |
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
Adaptive models |
dc.subject.otherIndex |
Classification models |
dc.subject.otherIndex |
Data points |
dc.subject.otherIndex |
Early prediction |
dc.subject.otherIndex |
High volume manufacturing |
dc.subject.otherIndex |
Integrated circuit manufacturing |
dc.subject.otherIndex |
Low-yield |
dc.subject.otherIndex |
Manufacturing environments |
dc.subject.otherIndex |
Multi-modal |
dc.subject.otherIndex |
Performance evaluation |
dc.subject.otherIndex |
Prediction methods |
dc.subject.otherIndex |
State of the art |
dc.subject.otherIndex |
SVM classifiers |
dc.subject.otherIndex |
Yield estimation |
dc.subject.otherIndex |
Yield threshold |
dc.subject.otherIndex |
Crystal defects |
dc.subject.otherIndex |
Data processing |
dc.subject.otherIndex |
Data structures |
dc.subject.otherIndex |
Industry |
dc.subject.otherIndex |
Manufacture |
dc.subject.otherIndex |
Multivariable systems |
dc.subject.otherIndex |
Nonlinear systems |
dc.subject.otherIndex |
Support vector machines |
dc.subject.otherKeywordPlus |
SEMICONDUCTOR MANUFACTURING PROCESSES |
dc.subject.otherKeywordPlus |
NEAREST-NEIGHBOR RULE |
dc.subject.otherKeywordPlus |
VIRTUAL METROLOGY |
dc.subject.otherKeywordPlus |
FAULT-DETECTION |
dc.subject.otherKeywordPlus |
SYSTEM |
dc.subject.otherWOS |
Engineering, Manufacturing |
dc.subject.otherWOS |
Engineering, Electrical and Electronic |
dc.subject.otherWOS |
Physics, Applied |
dc.subject.otherWOS |
Physics, Condensed Matter |