AUB ScholarWorks

A generic interference model for uplink OFDMA networks with fractional frequency reuse

Show simple item record

dc.contributor.author Tabassum H.
dc.contributor.author Dawy Z.
dc.contributor.author Alouini M.S.
dc.contributor.author Yilmaz F.
dc.contributor.editor
dc.date 2014
dc.date.accessioned 2017-09-07T07:08:28Z
dc.date.available 2017-09-07T07:08:28Z
dc.date.issued 2014
dc.identifier 10.1109/TVT.2013.2284337
dc.identifier.isbn
dc.identifier.issn 00189545
dc.identifier.uri http://hdl.handle.net/10938/11962
dc.description.abstract Fractional frequency reuse (FFR) has emerged as a viable solution to coordinate and mitigate cochannel interference (CCI) in orthogonal frequency-division multiple-access (OFDMA)-based wireless cellular networks. The incurred CCI in cellular networks with FFR is highly uncertain and varies as a function of various design parameters that include the user scheduling schemes, the transmit power distribution among multiple allocated subcarriers, the partitioning of the cellular region into cell-edge and cell-center zones, the allocation of spectrum within each zone, and the channel reuse factors. To this end, this paper derives a generic analytical model for uplink CCI in multicarrier OFDMA networks with FFR. The derived expressions capture several network design parameters and are applicable to any composite fading-channel models. The accuracy of the derivations is verified via Monte Carlo simulations. Moreover, their usefulness is demonstrated by obtaining closed-form expressions for the Rayleigh fading-channel model and by evaluating important network performance metrics such as ergodic capacity. Numerical results provide useful system design guidelines and highlight the trade-offs associated with the deployment of FFR schemes in OFDMA-based networks. © 2013 IEEE.
dc.format.extent
dc.format.extent Pages: (1491-1497)
dc.language English
dc.publisher Institute of Electrical and Electronics Engineers Inc.; PISCATAWAY
dc.relation.ispartof Publication Name: IEEE Transactions on Vehicular Technology; Publication Year: 2014; Volume: 63; no. 3; Pages: (1491-1497);
dc.relation.ispartofseries
dc.relation.uri
dc.source Scopus
dc.subject.other
dc.title A generic interference model for uplink OFDMA networks with fractional frequency reuse
dc.type Article
dc.contributor.affiliation Tabassum, H., Division of Computer, Electrical, Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada, Vodafone Technology, 34469 Istanbul, Turkey
dc.contributor.affiliation Dawy, Z., Department of Electrical and Computer Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
dc.contributor.affiliation Alouini, M.S., Division of Computer, Electrical, Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
dc.contributor.affiliation Yilmaz, F., Division of Computer, Electrical, Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia, Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada, Vodafone Technology, 34469 Istanbul, Turkey
dc.contributor.authorAddress
dc.contributor.authorCorporate University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Electrical and Computer Engineering;
dc.contributor.authorDepartment Electrical and Computer Engineering
dc.contributor.authorDivision
dc.contributor.authorEmail hina.tabassum@kaust.edu.sa; zaher.dawy@aub.edu.lb; slim.alouini@kaust.edu.sa; ferkan.yilmaz@kaust.edu.sa
dc.contributor.authorFaculty Faculty of Engineering and Architecture
dc.contributor.authorInitials Tabassum, H
dc.contributor.authorInitials Dawy, Z
dc.contributor.authorInitials Alouini, MS
dc.contributor.authorInitials Yilmaz, F
dc.contributor.authorOrcidID
dc.contributor.authorReprintAddress Tabassum, H (reprint author), Univ Manitoba, Dept Elect and Comp Engn, Winnipeg, MB R3T 5V6, Canada.
dc.contributor.authorResearcherID
dc.contributor.authorUniversity American University of Beirut
dc.description.cited Al-Ahmadi S, 2010, IEEE T WIREL COMMUN, V9, P706, DOI 10.1109-TWC.2010.02.081266; Ali SH, 2009, IEEE T WIREL COMMUN, V8, P4286, DOI 10.1109-TWC.2009.081146; Bithas PS, 2006, IEEE COMMUN LETT, V10, P353, DOI 10.1109-LCOMM.2006.05030; Bjerke BA, 2011, IEEE WIREL COMMUN, V18, P4, DOI 10.1109-MWC.2011.6056684; Bonald T., 2009, P 7 INT S MOD OPT MO, P1; Elayoubi S.-E., 2007, P 15 IEEE INT C NETW, P537; Elayoubi SE, 2008, IEEE T WIREL COMMUN, V7, P1623, DOI 10.1109-TWC.2008.060458; Fujii H, 2008, IEEE VTS VEH TECHNOL, P1676; Ghaffar R., 2010, P 8 INT S MOD OPT MO, P273; Gradshteyn I. S., 2000, TABLE INTEGRALS SERI; Haipend X., 2007, P IEEE INT S PIMRC S, P1; Hamdi KA, 2010, IEEE T COMMUN, V58, P411, DOI 10.1109-TCOMM.2010.02.080117; Kim K, 2005, IEEE COMMUN LETT, V9, P526, DOI 10.1109-LCOMM.2005.06018; Ko YC, 2000, IEEE T COMMUN, V48, P1783; Ksairi N, 2011, IEEE T WIREL COMMUN, V10, P2101, DOI 10.1109-TWC.2011.051311.100393; Moretti M, 2013, IEEE T WIREL COMMUN, V12, P278, DOI 10.1109-TWC.2012.120412.120355; Moretti M, 2011, IEEE T VEH TECHNOL, V60, P1788, DOI 10.1109-TVT.2011.2119501; Novlan TD, 2011, IEEE T WIREL COMMUN, V10, P4294, DOI 10.1109-TWC.2011.100611.110181; Tabassum H, 2013, IEEE T WIREL COMMUN, V12, P206, DOI 10.1109-TWC.2012.120412.112244; Xu Z., 2011, P IEEE ICC, P1
dc.description.citedCount
dc.description.citedTotWOSCount 1
dc.description.citedWOSCount 1
dc.format.extentCount 7
dc.identifier.articleNo 6619435
dc.identifier.coden ITVTA
dc.identifier.pubmedID
dc.identifier.scopusID 84896939234
dc.identifier.url
dc.publisher.address 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA
dc.relation.ispartofConference
dc.relation.ispartofConferenceCode
dc.relation.ispartofConferenceDate
dc.relation.ispartofConferenceHosting
dc.relation.ispartofConferenceLoc
dc.relation.ispartofConferenceSponsor
dc.relation.ispartofConferenceTitle
dc.relation.ispartofFundingAgency
dc.relation.ispartOfISOAbbr IEEE Trans. Veh. Technol.
dc.relation.ispartOfIssue 3
dc.relation.ispartOfPart
dc.relation.ispartofPubTitle IEEE Transactions on Vehicular Technology
dc.relation.ispartofPubTitleAbbr IEEE Trans. Veh. Technol.
dc.relation.ispartOfSpecialIssue
dc.relation.ispartOfSuppl
dc.relation.ispartOfVolume 63
dc.source.ID WOS:000333100700039
dc.type.publication Journal
dc.subject.otherAuthKeyword Fractional frequency reuse (FFR)
dc.subject.otherAuthKeyword generalized fading channels
dc.subject.otherAuthKeyword greedy scheduling
dc.subject.otherAuthKeyword power allocation
dc.subject.otherAuthKeyword round robin scheduling
dc.subject.otherChemCAS
dc.subject.otherIndex Cochannel interference
dc.subject.otherIndex Fading channels
dc.subject.otherIndex Monte Carlo methods
dc.subject.otherIndex Orthogonal frequency division multiplexing
dc.subject.otherIndex Rayleigh fading
dc.subject.otherIndex Scheduling
dc.subject.otherIndex Uncertainty analysis
dc.subject.otherIndex Cochannel interference (CCI)
dc.subject.otherIndex Fractional frequency reuses (FFR)
dc.subject.otherIndex Generalized fading channels
dc.subject.otherIndex Network performance metrics
dc.subject.otherIndex Orthogonal frequency-division multiple-access (OFDMA)
dc.subject.otherIndex Power allocations
dc.subject.otherIndex Round-robin scheduling
dc.subject.otherIndex Wireless cellular networks
dc.subject.otherIndex Frequency division multiple access
dc.subject.otherKeywordPlus FADING CHANNELS
dc.subject.otherKeywordPlus ALLOCATION
dc.subject.otherKeywordPlus SYSTEMS
dc.subject.otherKeywordPlus CAPACITY
dc.subject.otherWOS Engineering, Electrical and Electronic
dc.subject.otherWOS Telecommunications
dc.subject.otherWOS Transportation Science and Technology


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


Browse

My Account