AUB ScholarWorks

Self-organizing feature maps for the vehicle routing problem with backhauls

Show simple item record Ghaziri H. Osman I.H.
dc.contributor.editor 2006 2017-09-07T07:51:25Z 2017-09-07T07:51:25Z 2006
dc.identifier 10.1007/s10951-006-6774-z
dc.identifier.issn 10946136
dc.description.abstract In the Vehicle Routing Problem with Backhauls (VRPB), a central depot, a fleet of homogeneous vehicles, and a set of customers are given. The set of customers is divided into two subsets. The first (second) set of linehauls (backhauls) consists of customers with known quantity of goods to be delivered from (collected to) the depot. The VRPB objective is to design a set of minimum cost mutes; originating and terminating at the central depot to service the set of customers. In this paper, we develop a self-organizing feature maps algorithm, which uses unsupervised competitive neural network concepts. The definition of the architecture of the neural network and its learning rule are the main contribution. The architecture consists of two types of chains: linehaul and backhaul chains. Linehaul chains interact exclusively with linehaul customers. Similarly, backhaul chains interact exclusively with backhaul customers. Additional types of interactions are introduced in order to form feasible VRPB solution when the algorithm converges. The generated routes are then improved using the well-known 2-opt procedure. The implemented algorithm is compared with other approaches in the literature. The computational results are reported for standard benchmark test problems. They show that the proposed approach is competitive with the most efficient metaheuristics. © Springer Science + Business Media, LLC 2006.
dc.format.extent Pages: (97-114)
dc.language English
dc.publisher DORDRECHT
dc.relation.ispartof Publication Name: Journal of Scheduling; Publication Year: 2006; Volume: 9; no. 2; Pages: (97-114);
dc.source Scopus
dc.title Self-organizing feature maps for the vehicle routing problem with backhauls
dc.type Article
dc.contributor.affiliation Ghaziri, H., School of Business, American University of Beirut, Bliss Street, Beirut, Lebanon
dc.contributor.affiliation Osman, I.H., School of Business, American University of Beirut, Bliss Street, Beirut, Lebanon
dc.contributor.authorAddress Ghaziri, H.; School of Business, American University of Beirut, Bliss Street, Beirut, Lebanon; email:
dc.contributor.authorCorporate University: American University of Beirut; Faculty: Suliman S. Olayan School of Business; Department: School of Business;
dc.contributor.authorDepartment School of Business
dc.contributor.authorFaculty Suliman S. Olayan School of Business
dc.contributor.authorInitials Ghaziri, H
dc.contributor.authorInitials Osman, IH
dc.contributor.authorReprintAddress Ghaziri, H (reprint author), Amer Univ Beirut, Sch Business, Bliss St, Beirut, Lebanon.
dc.contributor.authorUniversity American University of Beirut
dc.description.cited ANDRESOL R, 1999, META HEURISTICS ADV, P393; ANGENIOL B, 1988, NEURAL NETWORKS, V1, P289, DOI 10.1016-0893-6080(88)90002-0; Anily S, 1996, NAV RES LOG, V43, P415, DOI 10.1002-(SICI)1520-6750(199604)43:3415::AID-NAV73.0.CO;2-C; Aras N, 1999, NEURAL NETWORKS, V12, P1273, DOI 10.1016-S0893-6080(99)00063-5; BURKE LI, 1994, NEURAL NETWORKS, V7, P681, DOI 10.1016-0893-6080(94)90045-0; CASCO D, 1988, VEHICLE ROUTING METH, V16, P127; Chisman J. A., 1975, Computers and Operations Research, V2, DOI 10.1016-0305-0548(75)90015-5; Deif I., 1984, P BABS C SOFTW US TR, P75; DONGARRA JJ, 2002, PERFORMANCE VARIOUS; DURBIN R, 1987, NATURE, V326, P689, DOI 10.1038-326689a0; FISCHETTI M, 1992, MATH PROGRAM, V53, P173, DOI 10.1007-BF01585701; FORT JC, 1988, BIOL CYBERN, V59, P33, DOI 10.1007-BF00336888; GENDREAU M, 1992, OPER RES, V40, P1086, DOI 10.1287-opre.40.6.1086; Gendreau M, 1996, COMPUT OPER RES, V23, P501, DOI 10.1016-0305-0548(95)00036-4; Ghaziri H., 1996, METAHEURISTICS THEOR, P651; GHAZIRI H, 1991, ARTIFICIAL NEURAL NE, P829; Ghaziri H, 2003, COMPUT IND ENG, V44, P267, DOI 10.1016-S0360-8352(02)00179-1; Goetschalcicx M., 1993, MHRCTR8813 GEORG I T; GOETSCHALCKX M, 1989, EUR J OPER RES, V42, P39, DOI 10.1016-0377-2217(89)90057-X; Golden B., 1985, P 21 ANN M SE TIMS M, P90; JONGENS K, 1985, EUR J OPER RES, V19, P68, DOI 10.1016-0377-2217(85)90309-1; KALANTARI B, 1985, EUR J OPER RES, V22, P377, DOI 10.1016-0377-2217(85)90257-7; KENNEDY P, 1998, RISC BENCHMARK SCORE; KOHONEN T, 1982, BIOL CYBERN, V43, P59, DOI 10.1007-BF00337288; Kohonen T., 1995, SELF ORG MAPS; Laporte G, 1995, ANN OPER RES, V61, P227, DOI 10.1007-BF02098290; LOOI CK, 1992, COMPUT OPER RES, V19, P191, DOI 10.1016-0305-0548(92)90044-6; LOTKIN FCJ, 1978, EUROPEAN J OPERATION, V3, P135; MLADENOVIC N, 2001, COMMUNICATION; Mladenovic N, 1997, COMPUT OPER RES, V24, P1097, DOI 10.1016-S0305-0548(97)00031-2; Modares A., 1999, International Transactions in Operational Research, V6, DOI 10.1111-j.1475-3995.1999.tb00175.x; MOSHEIOV G, 1994, EUR J OPER RES, V79, P299, DOI 10.1016-0377-2217(94)90360-3; OSMAN IH, 2002, J SCHEDULING; Osman IH, 1995, OPERATIONAL RES TUTO, P92; Osman IH, 1996, ANN OPER RES, V63, P513; Peng MK, 1996, NEURAL NETWORKS, V9, P1241, DOI 10.1016-0893-6080(96)00017-2; Potvin J.-Y., 1993, ORSA Journal on Computing, V5; POTVIN JY, 1995, NEUROCOMPUTING, V8, P125, DOI 10.1016-0925-2312(94)00012-H; Potvin J.-Y., 1996, METAHEURISTICS THEOR, P619; REFETOFF S, 1990, THYROID TODAY, V13, P1; Renaud J, 2000, COMPUT OPER RES, V27, P905, DOI 10.1016-S0305-0548(99)00066-0; Smith KA, 1999, INFORMS J COMPUT, V11, P15, DOI 10.1287-ijoc.11.1.15; HOPFIELD JJ, 1985, BIOL CYBERN, V52, P141; Thangiah SR, 1996, COMPUT OPER RES, V23, P1043, DOI 10.1016-0305-0548(96)00018-4; Toth P., 1996, ADV METHODS TRANSPOR, P585; Toth P, 1999, EUR J OPER RES, V113, P528, DOI 10.1016-S0377-2217(98)00086-1; Toth P, 1997, TRANSPORT SCI, V31, P372, DOI 10.1287-trsc.31.4.372; Vakhutinsky A. I., 1995, Journal of Heuristics, V1, DOI 10.1007-BF02430366; YANO CA, 1987, INTERFACES, V17, P52, DOI 10.1287-inte.17.2.52
dc.description.citedCount 16
dc.description.citedTotWOSCount 12
dc.description.citedWOSCount 12
dc.format.extentCount 18
dc.identifier.scopusID 33646422790
dc.relation.ispartOfISOAbbr J. Sched.
dc.relation.ispartOfIssue 2
dc.relation.ispartofPubTitle Journal of Scheduling
dc.relation.ispartofPubTitleAbbr J. Scheduling
dc.relation.ispartOfVolume 9
dc.source.ID WOS:000236793000002
dc.type.publication Journal
dc.subject.otherAuthKeyword Metaheuristics
dc.subject.otherAuthKeyword Neural networks
dc.subject.otherAuthKeyword Self-organizing feature maps
dc.subject.otherAuthKeyword Vehicle routing problem with backhauls
dc.subject.otherIndex Algorithms
dc.subject.otherIndex Computation theory
dc.subject.otherIndex Customer satisfaction
dc.subject.otherIndex Maps
dc.subject.otherIndex Neural networks
dc.subject.otherIndex Problem solving
dc.subject.otherIndex Metaheuristics
dc.subject.otherIndex Self-organizing feature maps
dc.subject.otherIndex Vehicle routing problem with backhauls
dc.subject.otherIndex Intelligent vehicle highway systems
dc.subject.otherKeywordPlus TRAVELING SALESMAN PROBLEM
dc.subject.otherKeywordPlus NEURAL-NETWORK
dc.subject.otherKeywordPlus COMBINATORIAL OPTIMIZATION
dc.subject.otherKeywordPlus ALGORITHM
dc.subject.otherKeywordPlus DELIVERY
dc.subject.otherKeywordPlus PICKUP
dc.subject.otherWOS Engineering, Manufacturing
dc.subject.otherWOS Operations Research and Management Science

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


My Account