dc.contributor.author |
Ghauch A. |
dc.contributor.author |
Abou Assi H. |
dc.contributor.author |
Tuqan A. |
dc.contributor.editor |
|
dc.date |
2010 |
dc.date.accessioned |
2017-10-03T15:45:21Z |
dc.date.available |
2017-10-03T15:45:21Z |
dc.date.issued |
2010 |
dc.identifier |
10.1016/j.jhazmat.2009.10.125 |
dc.identifier.isbn |
|
dc.identifier.issn |
03043894 |
dc.identifier.uri |
http://hdl.handle.net/10938/12596 |
dc.description.abstract |
Since the introduction of iron wall technology, the inherent relationship between contaminant removal and iron corrosion has been mostly attributed to electron transfer from the metal body (direct reduction). This thermodynamically founded premise has failed to explain several experimental facts. Recently, a new concept considering adsorption and co-precipitation as fundamental contaminant removal mechanisms was introduced. This consistent concept has faced very skeptic views and necessarily needs experimental validation. The present work was the first independent attempt to validate the new concept using clofibric acid (CLO) as model compound. For this purpose, a powdered Fe0 material (Fe0) was used in CLO removal experiments under various experimental conditions. Additional experiments were performed with plated Fe0 (mFe0: Fe0-Pd0, Fe0-Ni0) to support the discussion of removal mechanism. Main investigated experimental variables included: abundance of O2, abundance of iron corrosion products (ICPs) and shaking operations. Results corroborated the concept that quantitative contaminant removal in Fe0-H2O systems occurs within the oxide-film in the vicinity of Fe0. Additionally, mixing type and shaking intensity significantly influenced the extent of CLO removal. More importantly, HPLC-MS revealed that the identity of reaction products depends on the extent of iron corrosion or the abundance of ICPs. The investigation of the CLO-Fe0-H2O system disproved the popular view that direct reduction mediates contaminant removal in the presence of Fe0. © 2009 Elsevier B.V. All rights reserved. |
dc.format.extent |
|
dc.format.extent |
Pages: (48-55) |
dc.language |
English |
dc.publisher |
AMSTERDAM |
dc.relation.ispartof |
Publication Name: Journal of Hazardous Materials; Publication Year: 2010; Volume: 176; no. 41642; Pages: (48-55); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Investigating the mechanism of clofibric acid removal in Fe0-H2O systems |
dc.type |
Article |
dc.contributor.affiliation |
Ghauch, A., American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh - 1107-2020, Beirut, Lebanon |
dc.contributor.affiliation |
Abou Assi, H., American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh - 1107-2020, Beirut, Lebanon |
dc.contributor.affiliation |
Tuqan, A., American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh - 1107-2020, Beirut, Lebanon |
dc.contributor.authorAddress |
Ghauch, A.; American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh - 1107-2020, Beirut, Lebanon; email: ag23@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Arts and Sciences; Department: Chemistry; |
dc.contributor.authorDepartment |
Chemistry |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
ag23@aub.edu.lb |
dc.contributor.faculty |
Faculty of Arts and Sciences |
dc.contributor.authorInitials |
Ghauch, A |
dc.contributor.authorInitials |
Abou Assi, H |
dc.contributor.authorInitials |
Tuqan, A |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Ghauch, A (reprint author), Amer Univ Beirut, Fac Arts and Sci, Dept Chem, POB 11-0236,Riad El Solh 1107-2020, Beirut, Lebanon. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
Amin MN, 2008, CHEMOSPHERE, V70, P511, DOI 10.1016-j.chemosphere.2007.09.017; Burghardt D, 2005, ENVIRON GEOL, V49, P314, DOI 10.1007-s00254-005-0093-0; Chen JQ, 2006, J HAZARD MATER, V138, P182, DOI 10.1016-j.jhazmat.2006.05.049; Cheng SF, 2000, CHEMOSPHERE, V41, P1263, DOI 10.1016-S0045-6535(99)00530-5; Choi JH, 2007, CHEMOSPHERE, V67, P1551, DOI 10.1016-j.chemosphere.2006.12.029; Cundy AB, 2008, SCI TOTAL ENVIRON, V400, P42, DOI 10.1016-j.scitotenv.2008.07.002; Elsner M, 2007, ENVIRON SCI TECHNOL, V41, P7949, DOI 10.1021-es072046z; Garvin NL, 2006, J ENVIRON ENG-ASCE, V132, P1673, DOI 10.1061-(ASCE)0733-9372(2006)132:12(1673); Ghauch A, 2008, CHEMOSPHERE, V73, P751, DOI 10.1016-j.chemosphere.2008.06.035; Ghauch A, 2009, ENVIRON POLLUT, V157, P1626, DOI 10.1016-j.envpol.2008.12.024; Ghauch A, 2008, CHEMOSPHERE, V71, P816, DOI 10.1016-j.chemosphere.2007.11.057; Ghauch A, 2009, J HAZARD MATER, V164, P665, DOI 10.1016-j.jhazmat.2008.08.048; Gui L, 2009, APPL GEOCHEM, V24, P677, DOI 10.1016-j.apgeochem.2008.12.019; Hao Zhi-Wei, 2005, J Zhejiang Univ Sci B, V6, P182, DOI 10.1631-jzus.2005.B0182; Heberer T, 1997, FRESEN ENVIRON BULL, V6, P438; Henderson AD, 2007, ENVIRON ENG SCI, V24, P401, DOI 10.1089-ees.2006.0071; Huang CP, 1998, WATER RES, V32, P2257, DOI 10.1016-S0043-1354(97)00464-8; Hussam A, 2007, J ENVIRON SCI HEAL A, V42, P1869, DOI 10.1080-10934520701567122; Jiao YL, 2009, APPL CATAL B-ENVIRON, V91, P434, DOI 10.1016-j.apcatb.2009.06.012; Kang SH, 2009, ENVIRON SCI TECHNOL, V43, P878, DOI 10.1021-es801705f; Kang SH, 2009, ENVIRON SCI TECHNOL, V43, P3966, DOI 10.1021-es900569n; Kim YH, 2003, ENVIRON TECHNOL, V24, P69, DOI 10.1016-S0169-1317(03)00149-2; MATHESON LJ, 1994, ENVIRON SCI TECHNOL, V28, P2045, DOI 10.1021-es00061a012; Monteil-Rivera F, 2005, ENVIRON SCI TECHNOL, V39, P9725, DOI 10.1021-es051315n; Noubactep C, 2009, J HAZARD MATER, V169, P1005, DOI 10.1016-j.jhazmat.2009.04.046; Noubactep C, 2003, ENVIRON SCI TECHNOL, V37, P4304, DOI 10.1021-es034296v; Noubactep C, 2009, J HAZARD MATER, V170, P1149, DOI 10.1016-j.jhazmat.2009.05.085; NOUBACTEP C, 2001, IN SITU IMMOBILISATI, P149; Noubactep C, 2008, ENVIRON TECHNOL, V29, P909, DOI 10.1080-09593330802131602; Noubactep C, 2009, J HAZARD MATER, V166, P79, DOI 10.1016-j.jhazmat.2008.11.001; Noubactep C, 2005, ENVIRON CHEM, V2, P235, DOI 10.1071-EN05003; Noubactep C., 2007, Open Environmental Sciences, V1, P9, DOI 10.2174-1876325100701010009; NOUBACTEP C, 2002, URANIUM AQUATIC ENV, P577; Noubactep C, 2006, J HAZARD MATER, V132, P202, DOI 10.1016-j.jhazmat.2005.08.047; O'Hannesin SF, 1998, GROUND WATER, V36, P164, DOI 10.1111-j.1745-6584.1998.tb01077.x; Rao PH, 2009, CHEMOSPHERE, V75, P156, DOI 10.1016-j.chemosphere.2008.12.019; Scherer MM, 2000, CRIT REV ENV SCI TEC, V30, P363, DOI 10.1080-10643380091184219; SCHREIER CG, 1994, CHEMOSPHERE, V29, P1743, DOI 10.1016-0045-6535(94)90320-4; SHAFIQUZZAMAN M, 2009, J HEALTH POPUL NUTR, V5, P674; Thiruverikatachari R, 2008, J IND ENG CHEM, V14, P145, DOI 10.1016-j.jiec.2007.10.001; Wanaratna P, 2006, J HAZARD MATER, V136, P68, DOI 10.1016-j.jhazmat.2005.11.015; Weber EJ, 1996, ENVIRON SCI TECHNOL, V30, P716, DOI 10.1021-es9505210 |
dc.description.citedCount |
32 |
dc.description.citedTotWOSCount |
32 |
dc.description.citedWOSCount |
32 |
dc.format.extentCount |
8 |
dc.identifier.articleNo |
|
dc.identifier.coden |
JHMAD |
dc.identifier.pubmedID |
19944526 |
dc.identifier.scopusID |
74449088425 |
dc.identifier.url |
|
dc.publisher.address |
PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
J. Hazard. Mater. |
dc.relation.ispartOfIssue |
41642 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
Journal of Hazardous Materials |
dc.relation.ispartofPubTitleAbbr |
J. Hazard. Mater. |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
176 |
dc.source.ID |
WOS:000274839700007 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Bimetallics |
dc.subject.otherAuthKeyword |
Clofibric acid |
dc.subject.otherAuthKeyword |
Iron corrosion products |
dc.subject.otherAuthKeyword |
Manganese oxides |
dc.subject.otherAuthKeyword |
Zerovalent iron |
dc.subject.otherChemCAS |
clofibric acid, 7314-47-8, 882-09-7 |
dc.subject.otherChemCAS |
iron, 14093-02-8, 53858-86-9, 7439-89-6 |
dc.subject.otherChemCAS |
water, 7732-18-5 |
dc.subject.otherChemCAS |
Clofibric Acid, 882-09-7 |
dc.subject.otherChemCAS |
Iron, 7439-89-6 |
dc.subject.otherChemCAS |
Water, 7732-18-5 |
dc.subject.otherChemCAS |
Water Pollutants, Chemical |
dc.subject.otherIndex |
Bimetallics |
dc.subject.otherIndex |
Clofibric acid |
dc.subject.otherIndex |
Contaminant removal |
dc.subject.otherIndex |
Direct Reduction |
dc.subject.otherIndex |
Electron transfer |
dc.subject.otherIndex |
Experimental conditions |
dc.subject.otherIndex |
Experimental validations |
dc.subject.otherIndex |
HPLC-MS |
dc.subject.otherIndex |
Iron corrosion |
dc.subject.otherIndex |
Model compound |
dc.subject.otherIndex |
New concept |
dc.subject.otherIndex |
Reaction products |
dc.subject.otherIndex |
Removal mechanism |
dc.subject.otherIndex |
Zero-valent iron |
dc.subject.otherIndex |
Acids |
dc.subject.otherIndex |
Adsorption |
dc.subject.otherIndex |
Contamination |
dc.subject.otherIndex |
Corrosion |
dc.subject.otherIndex |
Experiments |
dc.subject.otherIndex |
High energy physics |
dc.subject.otherIndex |
Iron oxides |
dc.subject.otherIndex |
Manganese |
dc.subject.otherIndex |
Manganese oxide |
dc.subject.otherIndex |
Palladium |
dc.subject.otherIndex |
Pyrometallurgy |
dc.subject.otherIndex |
Metal recovery |
dc.subject.otherIndex |
clofibric acid |
dc.subject.otherIndex |
iron |
dc.subject.otherIndex |
water |
dc.subject.otherIndex |
acid |
dc.subject.otherIndex |
adsorption |
dc.subject.otherIndex |
corrosion |
dc.subject.otherIndex |
electron |
dc.subject.otherIndex |
experimental study |
dc.subject.otherIndex |
iron |
dc.subject.otherIndex |
manganese oxide |
dc.subject.otherIndex |
oxygen |
dc.subject.otherIndex |
precipitation (chemistry) |
dc.subject.otherIndex |
quantitative analysis |
dc.subject.otherIndex |
article |
dc.subject.otherIndex |
controlled study |
dc.subject.otherIndex |
corrosion |
dc.subject.otherIndex |
degradation kinetics |
dc.subject.otherIndex |
high performance liquid chromatography |
dc.subject.otherIndex |
mass spectrometry |
dc.subject.otherIndex |
oxidation reduction reaction |
dc.subject.otherIndex |
waste component removal |
dc.subject.otherIndex |
Clofibric Acid |
dc.subject.otherIndex |
Iron |
dc.subject.otherIndex |
Oxidation-Reduction |
dc.subject.otherIndex |
Water |
dc.subject.otherIndex |
Water Pollutants, Chemical |
dc.subject.otherIndex |
Water Purification |
dc.subject.otherKeywordPlus |
ZERO-VALENT IRON |
dc.subject.otherKeywordPlus |
PERMEABLE REACTIVE BARRIERS |
dc.subject.otherKeywordPlus |
LONG-TERM PERFORMANCE |
dc.subject.otherKeywordPlus |
REDUCTIVE DECHLORINATION |
dc.subject.otherKeywordPlus |
ORGANIC-COMPOUNDS |
dc.subject.otherKeywordPlus |
GRANULAR IRON |
dc.subject.otherKeywordPlus |
METALLIC IRON |
dc.subject.otherKeywordPlus |
GROUNDWATER REMEDIATION |
dc.subject.otherKeywordPlus |
OXIDATIVE-DEGRADATION |
dc.subject.otherKeywordPlus |
SHAKING INTENSITY |
dc.subject.otherWOS |
Engineering, Environmental |
dc.subject.otherWOS |
Engineering, Civil |
dc.subject.otherWOS |
Environmental Sciences |