AUB ScholarWorks

Investigating the mechanism of clofibric acid removal in Fe0-H2O systems

Show simple item record

dc.contributor.author Ghauch A.
dc.contributor.author Abou Assi H.
dc.contributor.author Tuqan A.
dc.contributor.editor
dc.date 2010
dc.date.accessioned 2017-10-03T15:45:21Z
dc.date.available 2017-10-03T15:45:21Z
dc.date.issued 2010
dc.identifier 10.1016/j.jhazmat.2009.10.125
dc.identifier.isbn
dc.identifier.issn 03043894
dc.identifier.uri http://hdl.handle.net/10938/12596
dc.description.abstract Since the introduction of iron wall technology, the inherent relationship between contaminant removal and iron corrosion has been mostly attributed to electron transfer from the metal body (direct reduction). This thermodynamically founded premise has failed to explain several experimental facts. Recently, a new concept considering adsorption and co-precipitation as fundamental contaminant removal mechanisms was introduced. This consistent concept has faced very skeptic views and necessarily needs experimental validation. The present work was the first independent attempt to validate the new concept using clofibric acid (CLO) as model compound. For this purpose, a powdered Fe0 material (Fe0) was used in CLO removal experiments under various experimental conditions. Additional experiments were performed with plated Fe0 (mFe0: Fe0-Pd0, Fe0-Ni0) to support the discussion of removal mechanism. Main investigated experimental variables included: abundance of O2, abundance of iron corrosion products (ICPs) and shaking operations. Results corroborated the concept that quantitative contaminant removal in Fe0-H2O systems occurs within the oxide-film in the vicinity of Fe0. Additionally, mixing type and shaking intensity significantly influenced the extent of CLO removal. More importantly, HPLC-MS revealed that the identity of reaction products depends on the extent of iron corrosion or the abundance of ICPs. The investigation of the CLO-Fe0-H2O system disproved the popular view that direct reduction mediates contaminant removal in the presence of Fe0. © 2009 Elsevier B.V. All rights reserved.
dc.format.extent
dc.format.extent Pages: (48-55)
dc.language English
dc.publisher AMSTERDAM
dc.relation.ispartof Publication Name: Journal of Hazardous Materials; Publication Year: 2010; Volume: 176; no. 41642; Pages: (48-55);
dc.relation.ispartofseries
dc.relation.uri
dc.source Scopus
dc.subject.other
dc.title Investigating the mechanism of clofibric acid removal in Fe0-H2O systems
dc.type Article
dc.contributor.affiliation Ghauch, A., American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh - 1107-2020, Beirut, Lebanon
dc.contributor.affiliation Abou Assi, H., American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh - 1107-2020, Beirut, Lebanon
dc.contributor.affiliation Tuqan, A., American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh - 1107-2020, Beirut, Lebanon
dc.contributor.authorAddress Ghauch, A.; American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh - 1107-2020, Beirut, Lebanon; email: ag23@aub.edu.lb
dc.contributor.authorCorporate University: American University of Beirut; Faculty: Faculty of Arts and Sciences; Department: Chemistry;
dc.contributor.authorDepartment Chemistry
dc.contributor.authorDivision
dc.contributor.authorEmail ag23@aub.edu.lb
dc.contributor.faculty Faculty of Arts and Sciences
dc.contributor.authorInitials Ghauch, A
dc.contributor.authorInitials Abou Assi, H
dc.contributor.authorInitials Tuqan, A
dc.contributor.authorOrcidID
dc.contributor.authorReprintAddress Ghauch, A (reprint author), Amer Univ Beirut, Fac Arts and Sci, Dept Chem, POB 11-0236,Riad El Solh 1107-2020, Beirut, Lebanon.
dc.contributor.authorResearcherID
dc.contributor.authorUniversity American University of Beirut
dc.description.cited Amin MN, 2008, CHEMOSPHERE, V70, P511, DOI 10.1016-j.chemosphere.2007.09.017; Burghardt D, 2005, ENVIRON GEOL, V49, P314, DOI 10.1007-s00254-005-0093-0; Chen JQ, 2006, J HAZARD MATER, V138, P182, DOI 10.1016-j.jhazmat.2006.05.049; Cheng SF, 2000, CHEMOSPHERE, V41, P1263, DOI 10.1016-S0045-6535(99)00530-5; Choi JH, 2007, CHEMOSPHERE, V67, P1551, DOI 10.1016-j.chemosphere.2006.12.029; Cundy AB, 2008, SCI TOTAL ENVIRON, V400, P42, DOI 10.1016-j.scitotenv.2008.07.002; Elsner M, 2007, ENVIRON SCI TECHNOL, V41, P7949, DOI 10.1021-es072046z; Garvin NL, 2006, J ENVIRON ENG-ASCE, V132, P1673, DOI 10.1061-(ASCE)0733-9372(2006)132:12(1673); Ghauch A, 2008, CHEMOSPHERE, V73, P751, DOI 10.1016-j.chemosphere.2008.06.035; Ghauch A, 2009, ENVIRON POLLUT, V157, P1626, DOI 10.1016-j.envpol.2008.12.024; Ghauch A, 2008, CHEMOSPHERE, V71, P816, DOI 10.1016-j.chemosphere.2007.11.057; Ghauch A, 2009, J HAZARD MATER, V164, P665, DOI 10.1016-j.jhazmat.2008.08.048; Gui L, 2009, APPL GEOCHEM, V24, P677, DOI 10.1016-j.apgeochem.2008.12.019; Hao Zhi-Wei, 2005, J Zhejiang Univ Sci B, V6, P182, DOI 10.1631-jzus.2005.B0182; Heberer T, 1997, FRESEN ENVIRON BULL, V6, P438; Henderson AD, 2007, ENVIRON ENG SCI, V24, P401, DOI 10.1089-ees.2006.0071; Huang CP, 1998, WATER RES, V32, P2257, DOI 10.1016-S0043-1354(97)00464-8; Hussam A, 2007, J ENVIRON SCI HEAL A, V42, P1869, DOI 10.1080-10934520701567122; Jiao YL, 2009, APPL CATAL B-ENVIRON, V91, P434, DOI 10.1016-j.apcatb.2009.06.012; Kang SH, 2009, ENVIRON SCI TECHNOL, V43, P878, DOI 10.1021-es801705f; Kang SH, 2009, ENVIRON SCI TECHNOL, V43, P3966, DOI 10.1021-es900569n; Kim YH, 2003, ENVIRON TECHNOL, V24, P69, DOI 10.1016-S0169-1317(03)00149-2; MATHESON LJ, 1994, ENVIRON SCI TECHNOL, V28, P2045, DOI 10.1021-es00061a012; Monteil-Rivera F, 2005, ENVIRON SCI TECHNOL, V39, P9725, DOI 10.1021-es051315n; Noubactep C, 2009, J HAZARD MATER, V169, P1005, DOI 10.1016-j.jhazmat.2009.04.046; Noubactep C, 2003, ENVIRON SCI TECHNOL, V37, P4304, DOI 10.1021-es034296v; Noubactep C, 2009, J HAZARD MATER, V170, P1149, DOI 10.1016-j.jhazmat.2009.05.085; NOUBACTEP C, 2001, IN SITU IMMOBILISATI, P149; Noubactep C, 2008, ENVIRON TECHNOL, V29, P909, DOI 10.1080-09593330802131602; Noubactep C, 2009, J HAZARD MATER, V166, P79, DOI 10.1016-j.jhazmat.2008.11.001; Noubactep C, 2005, ENVIRON CHEM, V2, P235, DOI 10.1071-EN05003; Noubactep C., 2007, Open Environmental Sciences, V1, P9, DOI 10.2174-1876325100701010009; NOUBACTEP C, 2002, URANIUM AQUATIC ENV, P577; Noubactep C, 2006, J HAZARD MATER, V132, P202, DOI 10.1016-j.jhazmat.2005.08.047; O'Hannesin SF, 1998, GROUND WATER, V36, P164, DOI 10.1111-j.1745-6584.1998.tb01077.x; Rao PH, 2009, CHEMOSPHERE, V75, P156, DOI 10.1016-j.chemosphere.2008.12.019; Scherer MM, 2000, CRIT REV ENV SCI TEC, V30, P363, DOI 10.1080-10643380091184219; SCHREIER CG, 1994, CHEMOSPHERE, V29, P1743, DOI 10.1016-0045-6535(94)90320-4; SHAFIQUZZAMAN M, 2009, J HEALTH POPUL NUTR, V5, P674; Thiruverikatachari R, 2008, J IND ENG CHEM, V14, P145, DOI 10.1016-j.jiec.2007.10.001; Wanaratna P, 2006, J HAZARD MATER, V136, P68, DOI 10.1016-j.jhazmat.2005.11.015; Weber EJ, 1996, ENVIRON SCI TECHNOL, V30, P716, DOI 10.1021-es9505210
dc.description.citedCount 32
dc.description.citedTotWOSCount 32
dc.description.citedWOSCount 32
dc.format.extentCount 8
dc.identifier.articleNo
dc.identifier.coden JHMAD
dc.identifier.pubmedID 19944526
dc.identifier.scopusID 74449088425
dc.identifier.url
dc.publisher.address PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
dc.relation.ispartofConference
dc.relation.ispartofConferenceCode
dc.relation.ispartofConferenceDate
dc.relation.ispartofConferenceHosting
dc.relation.ispartofConferenceLoc
dc.relation.ispartofConferenceSponsor
dc.relation.ispartofConferenceTitle
dc.relation.ispartofFundingAgency
dc.relation.ispartOfISOAbbr J. Hazard. Mater.
dc.relation.ispartOfIssue 41642
dc.relation.ispartOfPart
dc.relation.ispartofPubTitle Journal of Hazardous Materials
dc.relation.ispartofPubTitleAbbr J. Hazard. Mater.
dc.relation.ispartOfSpecialIssue
dc.relation.ispartOfSuppl
dc.relation.ispartOfVolume 176
dc.source.ID WOS:000274839700007
dc.type.publication Journal
dc.subject.otherAuthKeyword Bimetallics
dc.subject.otherAuthKeyword Clofibric acid
dc.subject.otherAuthKeyword Iron corrosion products
dc.subject.otherAuthKeyword Manganese oxides
dc.subject.otherAuthKeyword Zerovalent iron
dc.subject.otherChemCAS clofibric acid, 7314-47-8, 882-09-7
dc.subject.otherChemCAS iron, 14093-02-8, 53858-86-9, 7439-89-6
dc.subject.otherChemCAS water, 7732-18-5
dc.subject.otherChemCAS Clofibric Acid, 882-09-7
dc.subject.otherChemCAS Iron, 7439-89-6
dc.subject.otherChemCAS Water, 7732-18-5
dc.subject.otherChemCAS Water Pollutants, Chemical
dc.subject.otherIndex Bimetallics
dc.subject.otherIndex Clofibric acid
dc.subject.otherIndex Contaminant removal
dc.subject.otherIndex Direct Reduction
dc.subject.otherIndex Electron transfer
dc.subject.otherIndex Experimental conditions
dc.subject.otherIndex Experimental validations
dc.subject.otherIndex HPLC-MS
dc.subject.otherIndex Iron corrosion
dc.subject.otherIndex Model compound
dc.subject.otherIndex New concept
dc.subject.otherIndex Reaction products
dc.subject.otherIndex Removal mechanism
dc.subject.otherIndex Zero-valent iron
dc.subject.otherIndex Acids
dc.subject.otherIndex Adsorption
dc.subject.otherIndex Contamination
dc.subject.otherIndex Corrosion
dc.subject.otherIndex Experiments
dc.subject.otherIndex High energy physics
dc.subject.otherIndex Iron oxides
dc.subject.otherIndex Manganese
dc.subject.otherIndex Manganese oxide
dc.subject.otherIndex Palladium
dc.subject.otherIndex Pyrometallurgy
dc.subject.otherIndex Metal recovery
dc.subject.otherIndex clofibric acid
dc.subject.otherIndex iron
dc.subject.otherIndex water
dc.subject.otherIndex acid
dc.subject.otherIndex adsorption
dc.subject.otherIndex corrosion
dc.subject.otherIndex electron
dc.subject.otherIndex experimental study
dc.subject.otherIndex iron
dc.subject.otherIndex manganese oxide
dc.subject.otherIndex oxygen
dc.subject.otherIndex precipitation (chemistry)
dc.subject.otherIndex quantitative analysis
dc.subject.otherIndex article
dc.subject.otherIndex controlled study
dc.subject.otherIndex corrosion
dc.subject.otherIndex degradation kinetics
dc.subject.otherIndex high performance liquid chromatography
dc.subject.otherIndex mass spectrometry
dc.subject.otherIndex oxidation reduction reaction
dc.subject.otherIndex waste component removal
dc.subject.otherIndex Clofibric Acid
dc.subject.otherIndex Iron
dc.subject.otherIndex Oxidation-Reduction
dc.subject.otherIndex Water
dc.subject.otherIndex Water Pollutants, Chemical
dc.subject.otherIndex Water Purification
dc.subject.otherKeywordPlus ZERO-VALENT IRON
dc.subject.otherKeywordPlus PERMEABLE REACTIVE BARRIERS
dc.subject.otherKeywordPlus LONG-TERM PERFORMANCE
dc.subject.otherKeywordPlus REDUCTIVE DECHLORINATION
dc.subject.otherKeywordPlus ORGANIC-COMPOUNDS
dc.subject.otherKeywordPlus GRANULAR IRON
dc.subject.otherKeywordPlus METALLIC IRON
dc.subject.otherKeywordPlus GROUNDWATER REMEDIATION
dc.subject.otherKeywordPlus OXIDATIVE-DEGRADATION
dc.subject.otherKeywordPlus SHAKING INTENSITY
dc.subject.otherWOS Engineering, Environmental
dc.subject.otherWOS Engineering, Civil
dc.subject.otherWOS Environmental Sciences


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


Browse

My Account