Abstract:
Discotic liquid crystals (DLCs) have been exploited in opto-electronic devices for their advantageous properties including long-range self-assembling, self-healing, ease of processing, solubility in a variety of organic solvents, and high charge-carrier mobilities along the stacking axis. An overview of DLCs and their charge-carrier mobilities, theoretical modeling, alignment, and device applications is addressed herein. The effects of alignment on charge-carrier properties of DLCs are discussed. Particular attention is devoted to processing techniques that achieve suitable alignment of DLCs for efficient electronic devices such as zone-casting, zone melting, Langmuir-Blodgett deposition, solution-casting on preoriented polytetrafluoroethylene (PTFE), surface treatment, IR irradiation, application of a magnetic field, use of sacrificial layers, use of blends, application of an electric field, and others. © 2010 American Chemical Society.