AUB ScholarWorks

Pulse-front propagation and interaction during the growth of CdS nanoparticles in a gel

Show simple item record Al-Ghoul M. Ghaddar T. Moukalled T.
dc.contributor.editor 2009 2017-10-03T15:45:41Z 2017-10-03T15:45:41Z 2009
dc.identifier 10.1021/jp9022647
dc.identifier.issn 15206106
dc.description.abstract We studied the spatiotemporal dynamics of a new system consisting of sulfide ions (outer electrolyte) diffusing into an organic gel (gelatin) containing mercaptoethanol-capped cadmium ions (inner electrolyte). The product, cadmium sulfide, exhibits a faint yellow transparent propagating front starting at the gel-outer electrolyte interface. When subjected to UV light, this system reveals fluorescing CdS nuclei localized spatially in a narrow region, called pulse, that leads the front and propagates down the tube. We show that the pulse consists of CdS nanoclusters of an average size of about 4 nm, whereas the trailing front consists of 6-8 nm cubicphase CdS crystallites. The width of the pulse remains constant in time, f, at about 2 mm and independent of the outer concentration So. It was found that the speed of the pulse fluctuates as the concentration of the capping agent is varried, with fastest pulses attained at a concentration of 40 mM for two different outer concentrations of sulfide ions. The origin of the yellow fluorescence of the pulse originates from emission from surface states. This dynamical system was then theoretically studied using a competitive particle growth model. The resulting evolution equations were solved numerically, and the results were compared to the experimental findings. It was shown that the model agrees in many aspects with the experiment. The densities of small particles p and large particles p were shown to evolve like a pulse and a front, repectively. The front was shown to extend diffusively as t1-2, as found experimentally. The distance traveled by the pulse Xpeak was shown to increase with outer concentraion S0 and obeys a concentration power law Xpeak ∼ S1-4 0. The width w of the pulse also obeys a time power law w ∼t a with a crossover between early times (a = 1-3) and intermediate times (a = 0). This system would enable us to study the early time dynamics of Liesegang systems. © 2009 American Chemical Society.
dc.format.extent Pages: (11594-11603)
dc.language English
dc.publisher WASHINGTON
dc.relation.ispartof Publication Name: Journal of Physical Chemistry B; Publication Year: 2009; Volume: 113; no. 34; Pages: (11594-11603);
dc.source Scopus
dc.title Pulse-front propagation and interaction during the growth of CdS nanoparticles in a gel
dc.type Article
dc.contributor.affiliation Al-Ghoul, M., Department of Chemistry, Center for Advanced Mathematical Sciences, American University of Beirut, Beirut, Lebanon
dc.contributor.affiliation Ghaddar, T., Department of Chemistry, Center for Advanced Mathematical Sciences, American University of Beirut, Beirut, Lebanon
dc.contributor.affiliation Moukalled, T., Department of Chemistry, Center for Advanced Mathematical Sciences, American University of Beirut, Beirut, Lebanon
dc.contributor.authorAddress Al-Ghoul, M.; Department of Chemistry, Center for Advanced Mathematical Sciences, American University of Beirut, Beirut, Lebanon
dc.contributor.authorCorporate University: American University of Beirut; Faculty: Faculty of Arts and Sciences; Department: Chemistry;
dc.contributor.authorDepartment Chemistry
dc.contributor.faculty Faculty of Arts and Sciences
dc.contributor.authorInitials Al-Ghoul, M
dc.contributor.authorInitials Ghaddar, T
dc.contributor.authorInitials Moukalled, T
dc.contributor.authorReprintAddress Al-Ghoul, M (reprint author), Amer Univ Beirut, Dept Chem, Beirut, Lebanon.
dc.contributor.authorUniversity American University of Beirut
dc.description.cited Banerjee R, 2000, J PHYS-CONDENS MAT, V12, P10647, DOI 10.1088-0953-8984-12-50-325; AVNIR D, 1984, NATURE, V307, P717, DOI 10.1038-307717a0; Backfolk K, 2002, J COLLOID INTERF SCI, V254, P8, DOI 10.1006-jcis.2002.8544; Bao YH, 2007, J AM CERAM SOC, V90, P1063, DOI 10.1111-j.1551-2916.2007.01504.x; Barkema GT, 1996, PHYS REV E, V53, pR2017; Baroud CN, 2003, PHYS REV E, V67, DOI 10.1103-PhysRevE.67.060104; Bazant MZ, 2000, PHYSICA D, V147, P95, DOI 10.1016-S0167-2789(00)00140-8; Bena I, 2005, J CHEM PHYS, V122, DOI 10.1063-1.1833356; Bing Liu, 2001, Journal of Applied Physics, V89, DOI 10.1063-1.1335642; Cabarcos EL, 1996, PHYS REV LETT, V77, P2834; Chacron M, 1999, PHYS LETT A, V263, P70, DOI 10.1016-S0375-9601(99)00709-4; Chong TH, 2001, CHEM ENG SCI, V56, P5391, DOI 10.1016-S0009-2509(01)00237-8; CHOPARD B, 1993, PHYS REV E, V47, pR43; DEE GT, 1986, PHYS REV LETT, V57, P275, DOI 10.1103-PhysRevLett.57.275; FEENEY R, 1983, J CHEM PHYS, V78, P1293, DOI 10.1063-1.444867; FEINN D, 1978, J CHEM PHYS, V69, P27, DOI 10.1063-1.436406; Field R.J., 1985, OSCILLATIONS TRAVELI; GALFI L, 1988, PHYS REV A, V38, P3151, DOI 10.1103-PhysRevA.38.3151; HAMPTON JHD, 1993, CHEM ENG SCI, V48, P1601, DOI 10.1016-0009-2509(93)80120-F; Hecht I, 2006, PHYS REV E, V73, DOI 10.1103-PhysRevE.73.051109; Henisch H., 1988, CRYSTALS GELS LIESEG; JAMTVEIT B, 1999, GROWTH DISSOLUTION P; JIANG Z, 1990, PHYS REV A, V42, P7483, DOI 10.1103-PhysRevA.42.7483; Kahaner D, 1989, NUMERICAL METHODS SO; KAI S, 1982, J CHEM PHYS, V76, P1392, DOI 10.1063-1.443131; Kalandaragh YA, 2007, J CRYST GROWTH, V305, P175, DOI 10.1016-j.jcrysgro.2007.03.010; KOO YEL, 1991, J STAT PHYS, V65, P893, DOI 10.1007-BF01049588; Koza Z, 1996, PHYS REV E, V54, pR1040, DOI 10.1103-PhysRevE.54.R1040; Kravchenko VV, 1999, DOKL AKAD NAUK+, V364, P687; Kundu M, 1997, J MATER SCI, V32, P245, DOI 10.1023-A:1018520425765; Lamberti C, 2008, CHARACTERIZATION OF SEMICONDUCTOR HETEROSTRUCTURES AND NANOSTRUCTURES, P1, DOI 10.1016-B978-0-444-53099-8.00001-4; LARRALDE H, 1992, PHYS REV A, V46, P855, DOI 10.1103-PhysRevA.46.855; Liesegang R.E., 1896, CHEM FERNWIRKUNG LIE, V37, P331; LOVETT R, 1978, J CHEM PHYS, V69, P947, DOI 10.1063-1.436679; Magnico P, 2000, CHEM ENG SCI, V55, P4323, DOI 10.1016-S0009-2509(00)00047-6; MSHARRATIEH M, 2006, SIMULATION GEOCHEMIC, P225; Murakoshi K, 1998, J CHEM SOC FARADAY T, V94, P579, DOI 10.1039-a707192b; Okamoto S, 1998, SOLID STATE COMMUN, V105, P7, DOI 10.1016-S0038-1098(97)10058-8; Ortoleva PJ, 1994, GEOCHEMICAL SELF ORG; Ostwald W., 1899, LEHRBUCH ALLGEMEINEN, VII, P779; Park SH, 2007, PHYS REV E, V75, DOI 10.1103-PhysRevE.75.026107; Park SH, 2001, PHYS REV E, V64, DOI 10.1103-PhysRevE.64.055102; Polezhaev AA, 1994, CHAOS, V4, P631, DOI 10.1063-1.166040; PRAGER S, 1956, J CHEM PHYS, V25, P279, DOI 10.1063-1.1742871; Pribyl M, 2005, CHEM ENG J, V105, P99, DOI 10.1016-j.cej.2004.10.003; Sancho JM, 1996, J PHYS CHEM-US, V100, P19066, DOI 10.1021-jp961661e; Sinder M, 2000, PHYS REV E, V62, P3340, DOI 10.1103-PhysRevE.62.3340; TAITELBAUM H, 1992, PHYS REV A, V46, P2151, DOI 10.1103-PhysRevA.46.2151; Taitelbaum H, 1996, PHYS REV LETT, V77, P1640, DOI 10.1103-PhysRevLett.77.1640; TAITELBAUM H, 1991, J STAT PHYS, V65, P873, DOI 10.1007-BF01049587; Yen A, 1996, PHYS REV E, V54, P2447, DOI 10.1103-PhysRevE.54.2447; Yu JW, 1996, CHEM ENG SCI, V51, P4355, DOI 10.1016-0009-2509(96)00283-7; Zezza F, 2003, SYNTHETIC MET, V139, P597, DOI 10.1016-S0379-6779(03)00320-5; 2002, PHYS CHEM CHEM PHYS, V4, P1253
dc.description.citedCount 6
dc.description.citedTotWOSCount 8
dc.description.citedWOSCount 8
dc.format.extentCount 10
dc.identifier.coden JPCBF
dc.identifier.scopusID 70349232353
dc.publisher.address 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
dc.relation.ispartOfISOAbbr J. Phys. Chem. B
dc.relation.ispartOfIssue 34
dc.relation.ispartofPubTitle Journal of Physical Chemistry B
dc.relation.ispartofPubTitleAbbr J Phys Chem B
dc.relation.ispartOfVolume 113
dc.source.ID WOS:000269017700008
dc.type.publication Journal
dc.subject.otherIndex Average size
dc.subject.otherIndex Cadmium ions
dc.subject.otherIndex Cadmium sulfide
dc.subject.otherIndex Capping agent
dc.subject.otherIndex CdS
dc.subject.otherIndex CdS nanoclusters
dc.subject.otherIndex CdS nanoparticles
dc.subject.otherIndex Concentration of
dc.subject.otherIndex Evolution equations
dc.subject.otherIndex Front propagation
dc.subject.otherIndex Inner electrolyte
dc.subject.otherIndex Large particles
dc.subject.otherIndex Liesegang
dc.subject.otherIndex Mercaptoethanol
dc.subject.otherIndex New system
dc.subject.otherIndex Outer electrolyte
dc.subject.otherIndex Particle growth
dc.subject.otherIndex Power law
dc.subject.otherIndex Small particles
dc.subject.otherIndex Spatio-temporal dynamics
dc.subject.otherIndex Sulfide ions
dc.subject.otherIndex Surface state
dc.subject.otherIndex Time dynamic
dc.subject.otherIndex UV light
dc.subject.otherIndex Cadmium
dc.subject.otherIndex Concentration (process)
dc.subject.otherIndex Data storage equipment
dc.subject.otherIndex Differential equations
dc.subject.otherIndex Dynamical systems
dc.subject.otherIndex Electrolysis
dc.subject.otherIndex Electrolytes
dc.subject.otherIndex Gelation
dc.subject.otherIndex Gels
dc.subject.otherIndex Ions
dc.subject.otherIndex Cadmium compounds
dc.subject.otherKeywordPlus REACTION-DIFFUSION PROCESS
dc.subject.otherKeywordPlus PERIODIC PRECIPITATION
dc.subject.otherKeywordPlus CDS NANOCRYSTALS
dc.subject.otherKeywordPlus CALCIUM-CARBONATE
dc.subject.otherKeywordPlus PATTERN-FORMATION
dc.subject.otherKeywordPlus SYSTEMS
dc.subject.otherKeywordPlus KINETICS
dc.subject.otherKeywordPlus DEPOSITION
dc.subject.otherKeywordPlus REACTANTS
dc.subject.otherWOS Chemistry, Physical

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


My Account