Abstract:
LTE uplink frequency scheduling algorithms have neglected the user equipment's (UE) QoS requirements, relying only on the time domain to provide such requirements when creating the allocation matrix for the next transmission time interval. Two time domain paradigms exist for creating the resource allocation matrix: channel-dependent and proportional fairness. The channel dependent paradigm considers mainly the channel quality of UEs, allowing for users with high channel quality to get assigned most resources. The proportional fairness paradigm allocates resources to users based on the ratio of their channel condition over their lifelong service rate, allowing for users with low channel conditions to get some resources, but fewer than those with better channel conditions. Even though the proportional fairness paradigm's main focus is to achieve high system throughput without starving any user, it does not account for QoS requirements in many scenarios especially when UEs with high priority data pending for transmission have worst channel conditions than those with lower priority data. In this paper we propose a QoS-Aware resource allocation paradigm for LTE uplink scheduling that gives more advantage to UEs having high priority data, while not starving other users. The proposed approach is scalable and mobility aware where the dynamic nature of the network is taken into account while devising the algorithm. When simulated using NS3, the proposed algorithm produced very promising results and outperformed the state-of-the-Art approaches presented in literature. © 2013 IEEE.