AUB ScholarWorks

Enhanced Euclidean supersymmetry, 11D supergravity and SU(∞) Toda equation

Show simple item record Dunajski M. Gutowski J. Sabra W.A.
dc.contributor.editor 2013 2017-10-04T10:31:34Z 2017-10-04T10:31:34Z 2013
dc.identifier 10.1007/JHEP10(2013)089
dc.identifier.issn 11266708
dc.description.abstract We show how to lift solutions of Euclidean Einstein-Maxwell equations with non-zero cosmological constant to solutions of eleven-dimensional supergravity theory with non-zero fluxes. This yields a class of 11D metrics given in terms of solutions to SU(∞) Toda equation. We give one example of a regular solution and analyse its supersymmetry. We also analyse the integrability conditions of the Killing spinor equations of N = 2 minimal gauged supergravity in four Euclidean dimensions. We obtain necessary conditions for the existence of additional Killing spinors, corresponding to enhancement of supersymmetry. If the Weyl tensor is anti-self-dual then the supersymmetric metrics satisfying these conditions are given by separable solutions to the SU(∞) Toda equation. Otherwise theyare ambi-Kahler and are conformally equivalent to Kahler metrics of Calabi type or to product metrics on two Riemann surfaces. © SISSA 2013.
dc.language English
dc.publisher NEW YORK
dc.relation.ispartof Publication Name: Journal of High Energy Physics; Publication Year: 2013; Volume: 2013; no. 10;
dc.source Scopus
dc.title Enhanced Euclidean supersymmetry, 11D supergravity and SU(∞) Toda equation
dc.type Article
dc.contributor.affiliation Dunajski, M., Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
dc.contributor.affiliation Gutowski, J., Department of Mathematics, University of Surrey, Guildford, GU2 7XH, United Kingdom
dc.contributor.affiliation Sabra, W.A., Centre for Advanced Mathematical Sciences and Physics Department, American University of Beirut, Beirut, Lebanon
dc.contributor.authorAddress Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
dc.contributor.authorCorporate University: American University of Beirut; Faculty: Faculty of Arts and Sciences; Department: Physics;
dc.contributor.authorDepartment Physics
dc.contributor.faculty Faculty of Arts and Sciences
dc.contributor.authorInitials Dunajski, M
dc.contributor.authorInitials Gutowski, J
dc.contributor.authorInitials Sabra, WA
dc.contributor.authorReprintAddress Dunajski, M (reprint author), Univ Cambridge, Dept Appl Math and Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England.
dc.contributor.authorUniversity American University of Beirut
dc.description.cited Apostolov V., ARXIV10100992; Apostolov V, 1997, INT J MATH, V8, P421, DOI 10.1142-S0129167X97000214; BOYER CP, 1982, J MATH PHYS, V23, P1126, DOI 10.1063-1.525479; DERDZINSKI A, 1983, COMPOS MATH, V49, P405; Dunajski M., ARXIV13047772; DUNAJSKI M., 2009, OXFORD GRADUATE TEXT, V19; Dunajski M, 2011, J HIGH ENERGY PHYS, DOI 10.1007-JHEP03(2011)131; Dunajski M, 2011, CLASSICAL QUANT GRAV, V28, DOI 10.1088-0264-9381-28-2-025007; Dunajski M, 2007, CLASSICAL QUANT GRAV, V24, P1841, DOI 10.1088-0264-9381-24-7-010; FIGUEROAOFARRIL.J, 2003, JHEP, V3; Gauntlett J.P., 2003, JHEP, V12; Gauntlett JP, 2003, J HIGH ENERGY PHYS; Gibbons GW, 2000, J GEOM PHYS, V32, P311, DOI 10.1016-S0393-0440(99)00036-4; Gran U, 2007, J HIGH ENERGY PHYS; Gran U, 2005, CLASSICAL QUANT GRAV, V22, P2701, DOI 10.1088-0264-9381-22-13-013; Gutowski JB, 2010, PHYS LETT B, V693, P498, DOI 10.1016-j.physletb.2010.09.003; LUKIERSKI J, 1987, PHYS LETT B, V189, P99, DOI 10.1016-0370-2693(87)91277-9; Martelli D, 2012, NUCL PHYS B, V864, P840, DOI 10.1016-j.nuclphysb.2012.07.019; Martelli D., ARXIV12124618; Martelli D, 2013, NUCL PHYS B, V866, P72, DOI 10.1016-j.nuclphysb.2012.08.015; Martina L, 2001, J PHYS A-MATH GEN, V34, P9243, DOI 10.1088-0305-4470-34-43-310; POPE CN, 1980, PHYS LETT B, V97, P417, DOI 10.1016-0370-2693(80)90632-2; Pope CN, 2000, CLASSICAL QUANT GRAV, V17, P623, DOI 10.1088-0264-9381-17-3-305; Pope C.N., 1984, SANT FE M; Tod K.P., 1997, GEOMETRY PHYS; Tod K.P., 1995, TWISTOR THEORY; TOD KP, 1995, CLASSICAL QUANT GRAV, V12, P1535, DOI 10.1088-0264-9381-12-6-018
dc.description.citedCount 1
dc.description.citedTotWOSCount 0
dc.description.citedWOSCount 0
dc.format.extentCount 1
dc.identifier.articleNo 89
dc.identifier.scopusID 84888413076
dc.publisher.address 233 SPRING ST, NEW YORK, NY 10013 USA
dc.relation.ispartOfISOAbbr J. High Energy Phys.
dc.relation.ispartOfIssue 10
dc.relation.ispartofPubTitle Journal of High Energy Physics
dc.relation.ispartofPubTitleAbbr J. High Energy Phys.
dc.relation.ispartOfVolume 2013
dc.source.ID WOS:000325721400001
dc.type.publication Journal
dc.subject.otherAuthKeyword Differential and Algebraic Geometry
dc.subject.otherAuthKeyword Supergravity Models
dc.subject.otherKeywordPlus INSTANTONS
dc.subject.otherKeywordPlus KAHLER
dc.subject.otherWOS Physics, Particles and Fields

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


My Account