dc.contributor.author |
Dunajski M. |
dc.contributor.author |
Gutowski J. |
dc.contributor.author |
Sabra W.A. |
dc.contributor.editor |
|
dc.date |
2013 |
dc.date.accessioned |
2017-10-04T10:31:34Z |
dc.date.available |
2017-10-04T10:31:34Z |
dc.date.issued |
2013 |
dc.identifier |
10.1007/JHEP10(2013)089 |
dc.identifier.isbn |
|
dc.identifier.issn |
11266708 |
dc.identifier.uri |
http://hdl.handle.net/10938/13355 |
dc.description.abstract |
We show how to lift solutions of Euclidean Einstein-Maxwell equations with non-zero cosmological constant to solutions of eleven-dimensional supergravity theory with non-zero fluxes. This yields a class of 11D metrics given in terms of solutions to SU(∞) Toda equation. We give one example of a regular solution and analyse its supersymmetry. We also analyse the integrability conditions of the Killing spinor equations of N = 2 minimal gauged supergravity in four Euclidean dimensions. We obtain necessary conditions for the existence of additional Killing spinors, corresponding to enhancement of supersymmetry. If the Weyl tensor is anti-self-dual then the supersymmetric metrics satisfying these conditions are given by separable solutions to the SU(∞) Toda equation. Otherwise theyare ambi-Kahler and are conformally equivalent to Kahler metrics of Calabi type or to product metrics on two Riemann surfaces. © SISSA 2013. |
dc.format.extent |
|
dc.language |
English |
dc.publisher |
NEW YORK |
dc.relation.ispartof |
Publication Name: Journal of High Energy Physics; Publication Year: 2013; Volume: 2013; no. 10; |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Enhanced Euclidean supersymmetry, 11D supergravity and SU(∞) Toda equation |
dc.type |
Article |
dc.contributor.affiliation |
Dunajski, M., Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom |
dc.contributor.affiliation |
Gutowski, J., Department of Mathematics, University of Surrey, Guildford, GU2 7XH, United Kingdom |
dc.contributor.affiliation |
Sabra, W.A., Centre for Advanced Mathematical Sciences and Physics Department, American University of Beirut, Beirut, Lebanon |
dc.contributor.authorAddress |
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Arts and Sciences; Department: Physics; |
dc.contributor.authorDepartment |
Physics |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
m.dunajski@damtp.cam.ac.uk; j.gutowski@surrey.ac.uk; ws00@aub.edu.lb |
dc.contributor.faculty |
Faculty of Arts and Sciences |
dc.contributor.authorInitials |
Dunajski, M |
dc.contributor.authorInitials |
Gutowski, J |
dc.contributor.authorInitials |
Sabra, WA |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Dunajski, M (reprint author), Univ Cambridge, Dept Appl Math and Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
Apostolov V., ARXIV10100992; Apostolov V, 1997, INT J MATH, V8, P421, DOI 10.1142-S0129167X97000214; BOYER CP, 1982, J MATH PHYS, V23, P1126, DOI 10.1063-1.525479; DERDZINSKI A, 1983, COMPOS MATH, V49, P405; Dunajski M., ARXIV13047772; DUNAJSKI M., 2009, OXFORD GRADUATE TEXT, V19; Dunajski M, 2011, J HIGH ENERGY PHYS, DOI 10.1007-JHEP03(2011)131; Dunajski M, 2011, CLASSICAL QUANT GRAV, V28, DOI 10.1088-0264-9381-28-2-025007; Dunajski M, 2007, CLASSICAL QUANT GRAV, V24, P1841, DOI 10.1088-0264-9381-24-7-010; FIGUEROAOFARRIL.J, 2003, JHEP, V3; Gauntlett J.P., 2003, JHEP, V12; Gauntlett JP, 2003, J HIGH ENERGY PHYS; Gibbons GW, 2000, J GEOM PHYS, V32, P311, DOI 10.1016-S0393-0440(99)00036-4; Gran U, 2007, J HIGH ENERGY PHYS; Gran U, 2005, CLASSICAL QUANT GRAV, V22, P2701, DOI 10.1088-0264-9381-22-13-013; Gutowski JB, 2010, PHYS LETT B, V693, P498, DOI 10.1016-j.physletb.2010.09.003; LUKIERSKI J, 1987, PHYS LETT B, V189, P99, DOI 10.1016-0370-2693(87)91277-9; Martelli D, 2012, NUCL PHYS B, V864, P840, DOI 10.1016-j.nuclphysb.2012.07.019; Martelli D., ARXIV12124618; Martelli D, 2013, NUCL PHYS B, V866, P72, DOI 10.1016-j.nuclphysb.2012.08.015; Martina L, 2001, J PHYS A-MATH GEN, V34, P9243, DOI 10.1088-0305-4470-34-43-310; POPE CN, 1980, PHYS LETT B, V97, P417, DOI 10.1016-0370-2693(80)90632-2; Pope CN, 2000, CLASSICAL QUANT GRAV, V17, P623, DOI 10.1088-0264-9381-17-3-305; Pope C.N., 1984, SANT FE M; Tod K.P., 1997, GEOMETRY PHYS; Tod K.P., 1995, TWISTOR THEORY; TOD KP, 1995, CLASSICAL QUANT GRAV, V12, P1535, DOI 10.1088-0264-9381-12-6-018 |
dc.description.citedCount |
1 |
dc.description.citedTotWOSCount |
0 |
dc.description.citedWOSCount |
0 |
dc.format.extentCount |
1 |
dc.identifier.articleNo |
89 |
dc.identifier.coden |
|
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
84888413076 |
dc.identifier.url |
|
dc.publisher.address |
233 SPRING ST, NEW YORK, NY 10013 USA |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
J. High Energy Phys. |
dc.relation.ispartOfIssue |
10 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
Journal of High Energy Physics |
dc.relation.ispartofPubTitleAbbr |
J. High Energy Phys. |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
2013 |
dc.source.ID |
WOS:000325721400001 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Differential and Algebraic Geometry |
dc.subject.otherAuthKeyword |
Supergravity Models |
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
|
dc.subject.otherKeywordPlus |
INSTANTONS |
dc.subject.otherKeywordPlus |
KAHLER |
dc.subject.otherWOS |
Physics, Particles and Fields |