AUB ScholarWorks

Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor

Show simple item record

dc.contributor.author Sayess R.R.
dc.contributor.author Saikaly P.E.
dc.contributor.author El-Fadel M.
dc.contributor.author Li D.
dc.contributor.author Semerjian L.
dc.contributor.editor
dc.date 2013
dc.date.accessioned 2017-10-04T11:04:42Z
dc.date.available 2017-10-04T11:04:42Z
dc.date.issued 2013
dc.identifier 10.1016/j.watres.2012.11.023
dc.identifier.isbn
dc.identifier.issn 00431354
dc.identifier.uri http://hdl.handle.net/10938/13750
dc.description.abstract Integrating microbial fuel cell (MFC) into rotating biological contactor (RBC) creates an opportunity for enhanced removal of COD and nitrogen coupled with energy generation from wastewater. In this study, a three-stage rotating bioelectrochemical contactor (referred to as RBC-MFC unit) integrating MFC with RBC technology was constructed for simultaneous removal of carbonaceous and nitrogenous compounds and electricity generation from a synthetic medium containing acetate and ammonium. The performance of the RBC-MFC unit was compared to a control reactor (referred to as RBC unit) that was operated under the same conditions but without current generation (i.e. open-circuit mode). The effect of hydraulic loading rate (HLR) and COD-N ratio on the performance of the two units was investigated. At low (3.05 gCOD g-1N) and high COD-N ratio (6.64 gCOD g-1N), both units achieved almost similar COD and ammonia-nitrogen removal. However, the RBC-MFC unit achieved significantly higher denitrification and nitrogen removal compared to the RBC unit indicating improved denitrification at the cathode due to current flow. The average voltage under 1000 Ω external resistance ranged between 0.03 and 0.30 V and between 0.02 and 0.21 V for stages 1 and 2 of the RBC-MFC unit. Pyrosequencing analysis of bacterial 16S rRNA gene revealed high bacterial diversity at the anode and cathode of both units. Genera that play a role in nitrification (Nitrospira; Nitrosomonas), denitrification (Comamonas; Thauera) and electricity generation (Geobacter) were identified at the electrodes. Geobacter was only detected on the anode of the RBC-MFC unit. Nitrifiers and denitrifiers were more abundant in the RBC-MFC unit compared to the RBC unit and were largely present on the cathode of both units suggesting that most of the nitrogen removal occurred at the cathode. © 2012 Elsevier Ltd.
dc.format.extent
dc.format.extent Pages: (881-894)
dc.language English
dc.publisher OXFORD
dc.relation.ispartof Publication Name: Water Research; Publication Year: 2013; Volume: 47; no. 2; Pages: (881-894);
dc.relation.ispartofseries
dc.relation.uri
dc.source Scopus
dc.subject.other
dc.title Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor
dc.type Article
dc.contributor.affiliation Sayess, R.R., Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
dc.contributor.affiliation Saikaly, P.E., King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia
dc.contributor.affiliation El-Fadel, M., Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
dc.contributor.affiliation Li, D., King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia
dc.contributor.affiliation Semerjian, L., Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
dc.contributor.authorAddress Saikaly, P.E.; King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia; email: pascal.saikaly@kaust.edu.sa
dc.contributor.authorCorporate University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Civil and Environmental Engineering;
dc.contributor.authorDepartment Civil and Environmental Engineering
dc.contributor.authorDivision
dc.contributor.authorEmail pascal.saikaly@kaust.edu.sa
dc.contributor.faculty Faculty of Engineering and Architecture
dc.contributor.authorInitials Sayess, RR
dc.contributor.authorInitials Saikaly, PE
dc.contributor.authorInitials El-Fadel, M
dc.contributor.authorInitials Li, D
dc.contributor.authorInitials Semerjian, L
dc.contributor.authorOrcidID
dc.contributor.authorReprintAddress Saikaly, PE (reprint author), King Abdullah Univ Sci and Technol, Div Biol and Environm Sci and Engn, Water Desalinat and Reuse Res Ctr, Thuwal 239556900, Saudi Arabia.
dc.contributor.authorResearcherID Saikaly, Pascal-G-7958-2014
dc.contributor.authorUniversity American University of Beirut
dc.description.cited Aelterman P, 2006, ENVIRON SCI TECHNOL, V40, P3388, DOI 10.1021-es0525511; APHA AWWA, 2005, STANDARD METHODS EXA; Ayoub GM, 2004, WATER RES, V38, P3009, DOI 10.1016-j.watres.204.04.013; Bjornsson L, 2002, MICROBIOL-SGM, V148, P2309; Bond DR, 2002, SCIENCE, V295, P483, DOI 10.1126-science.1066771; BRAY J. ROGER, 1957, ECOL MONOGR, V27, P325, DOI 10.2307-1942268; Butler CS, 2010, APPL MICROBIOL BIOT, V86, P1399, DOI 10.1007-s00253-009-2421-x; Caporaso JG, 2010, BIOINFORMATICS, V26, P266, DOI 10.1093-bioinformatics-btp636; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038-nmeth.f.303; Carrera J, 2004, PROCESS BIOCHEM, V39, P2035, DOI 10.1016-j.procbio.2003.10.005; Cha J, 2010, BIOELECTROCHEMISTRY, V78, P72, DOI 10.1016-j.bioelechem.2009.07.009; Cheng KY, 2011, ENVIRON SCI TECHNOL, V45, P796, DOI 10.1021-es102482j; Clauwaert P, 2008, APPL MICROBIOL BIOT, V79, P901, DOI 10.1007-s00253-008-1522-2; Daims H, 2001, APPL ENVIRON MICROB, V67, P5273, DOI 10.1128-AEM.67.11.5273-5284.2001; Daims H, 2010, MICROBIAL ECOLOGY OF ACTIVATED SLUDGE, P259; Fierer N, 2008, P NATL ACAD SCI USA, V105, P17994, DOI 10.1073-pnas.0807920105; Forney LJ, 2004, CURR OPIN MICROBIOL, V7, P210, DOI 10.1016-j.mib.2004.04.015; Grady Jr CL, 2011, BIOL WASTEWATER TREA; He Z, 2009, ENVIRON SCI TECHNOL, V43, P3391, DOI 10.1021-es803492c; He Z, 2007, BIOSENS BIOELECTRON, V22, P3252, DOI 10.1016-j.bios.2007.01.010; Ishii S, 2008, BIOSCI BIOTECH BIOCH, V72, P286, DOI 10.1271-bbb.70179; Juretschko S, 1998, APPL ENVIRON MICROB, V64, P3042; Kiely PD, 2011, BIORESOURCE TECHNOL, V102, P361, DOI 10.1016-j.biortech.2010.05.017; Kim BH, 2004, APPL MICROBIOL BIOT, V63, P672, DOI 10.1007-s00253-003-1412-6; Liu XW, 2011, BIOTECHNOL BIOENG, V108, P1260, DOI 10.1002-bit.23056; Logan B. E., 2008, MICROBIAL FUEL CELLS; Logan BE, 2006, ENVIRON SCI TECHNOL, V40, P5181, DOI 10.1021-es0605016; Logan BE, 2006, TRENDS MICROBIOL, V14, P512, DOI 10.1016-j.tim.2006.10.003; Logan BE, 2009, NAT REV MICROBIOL, V7, P375, DOI 10.1038-nrmicro2113; Logan BE, 2005, WATER RES, V39, P942, DOI 10.1016-j.watres.2004.11.019; Logan BE, 2012, CHEMSUSCHEM, V5, P988, DOI 10.1002-cssc.201100604; Lozupone C, 2005, APPL ENVIRON MICROB, V71, P8228, DOI 10.1128-AEM.71.12.8228-8235.2005; Lu HB, 2006, WATER RES, V40, P3838, DOI 10.1016-j.watres.2006.09.004; Maixner F, 2006, ENVIRON MICROBIOL, V8, P1487, DOI 10.1111-j.1462-2920.2006.01033.x; Price MN, 2010, PLOS ONE, V5, DOI 10.1371-journal.pone.0009490; Purkhold U, 2000, APPL ENVIRON MICROB, V66, P5368, DOI 10.1128-AEM.66.12.5368-5382.2000; Rabaey K, 2005, TRENDS BIOTECHNOL, V23, P291, DOI 10.1016-j.tibtech.2005.04.008; Rabaey K, 2008, ISME J, V2, P519, DOI 10.1038-ismej.2008.1; Rabaey K, 2005, ENVIRON SCI TECHNOL, V39, P8077, DOI 10.1021-es050986i; Saikaly P, 2003, WATER AIR SOIL POLL, V150, P177, DOI 10.1023-A:1026164530805; Sogin ML, 2006, P NATL ACAD SCI USA, V103, P12115, DOI 10.1073-pnas.0605127103; Sun YM, 2011, BIORESOURCE TECHNOL, V102, P10886, DOI 10.1016-j.biortech.2011.09.038; Tchobanoglous G., 2003, WASTEWATER ENG TREAT; VERHAGEN FJM, 1991, APPL ENVIRON MICROB, V57, P3255; Virdis B, 2010, WATER RES, V44, P2970, DOI 10.1016-j.watres.2010.02.022; Virdis B, 2008, WATER RES, V42, P3013, DOI 10.1016-j.watres.2008.03.017; Wagner M, 2002, ANTON LEEUW INT J G, V81, P665, DOI 10.1023-A:1020586312170; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128-AEM.00062-07; Wang Y, 2009, PLOS ONE, V4, DOI 10.1371-journal.pone.0007401; WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307-2282967; Wei LL, 2012, INT J HYDROGEN ENERG, V37, P1067, DOI 10.1016-j.ijhydene.2011.02.120; Wells CL, 1996, MED MICROBIOLOGY; Xie S, 2011, BIORESOURCE TECHNOL, V102, P348, DOI 10.1016-j.biortech.2010.07.046; Xing DF, 2010, APPL MICROBIOL BIOT, V85, P1575, DOI 10.1007-s00253-009-2240-0; Yamada T, 2006, INT J SYST EVOL MICR, V56, P1331, DOI 10.1099-ijs.0.64169-0; Yan HJ, 2012, WATER RES, V46, P2215, DOI 10.1016-j.watres.2012.01.050; Yu CP, 2011, WATER RES, V45, P1157, DOI 10.1016-j.watres.2010.11.002; Zhang F, 2012, J CHEM TECHNOL BIOT, V87, P153, DOI 10.1002-jctb.2700; Zhao F, 2008, ENVIRON SCI TECHNOL, V42, P4971, DOI 10.1021-es8003766
dc.description.citedCount 9
dc.description.citedTotWOSCount 11
dc.description.citedWOSCount 10
dc.format.extentCount 14
dc.identifier.articleNo
dc.identifier.coden WATRA
dc.identifier.pubmedID 23219389
dc.identifier.scopusID 84871510081
dc.identifier.url
dc.publisher.address THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
dc.relation.ispartofConference
dc.relation.ispartofConferenceCode
dc.relation.ispartofConferenceDate
dc.relation.ispartofConferenceHosting
dc.relation.ispartofConferenceLoc
dc.relation.ispartofConferenceSponsor
dc.relation.ispartofConferenceTitle
dc.relation.ispartofFundingAgency
dc.relation.ispartOfISOAbbr Water Res.
dc.relation.ispartOfIssue 2
dc.relation.ispartOfPart
dc.relation.ispartofPubTitle Water Research
dc.relation.ispartofPubTitleAbbr Water Res.
dc.relation.ispartOfSpecialIssue
dc.relation.ispartOfSuppl
dc.relation.ispartOfVolume 47
dc.source.ID WOS:000315072600040
dc.type.publication Journal
dc.subject.otherAuthKeyword 16S rRNA gene pyrosequencing
dc.subject.otherAuthKeyword Denitrification
dc.subject.otherAuthKeyword Microbial fuel cell
dc.subject.otherAuthKeyword Nitrification
dc.subject.otherAuthKeyword Rotating bioelectrochemical contactor
dc.subject.otherAuthKeyword Rotating biological contactor
dc.subject.otherChemCAS nitrogen, 7727-37-9
dc.subject.otherChemCAS Acetic Acid, 64-19-7
dc.subject.otherChemCAS Nitrogen, 7727-37-9
dc.subject.otherChemCAS Oxygen, 7782-44-7
dc.subject.otherChemCAS Quaternary Ammonium Compounds
dc.subject.otherChemCAS RNA, Bacterial
dc.subject.otherChemCAS RNA, Ribosomal, 16S
dc.subject.otherChemCAS Waste Water
dc.subject.otherChemCAS Water Pollutants, Chemical
dc.subject.otherIndex 16S rRNA gene
dc.subject.otherIndex Ammonia-nitrogen
dc.subject.otherIndex Bacterial community structure
dc.subject.otherIndex Bacterial diversity
dc.subject.otherIndex COD-N ratios
dc.subject.otherIndex Control reactors
dc.subject.otherIndex Current flows
dc.subject.otherIndex Current generation
dc.subject.otherIndex Denitrifiers
dc.subject.otherIndex Electricity generation
dc.subject.otherIndex Energy generations
dc.subject.otherIndex External resistance
dc.subject.otherIndex Geobacter
dc.subject.otherIndex Hydraulic loading rates
dc.subject.otherIndex Nitrogenous compounds
dc.subject.otherIndex Nitrosomonas
dc.subject.otherIndex Nitrospira
dc.subject.otherIndex Pyrosequencing
dc.subject.otherIndex Reactor performance
dc.subject.otherIndex Rotating bioelectrochemical contactor
dc.subject.otherIndex Rotating biological contactor
dc.subject.otherIndex Simultaneous removal
dc.subject.otherIndex Synthetic medium
dc.subject.otherIndex Ammonium compounds
dc.subject.otherIndex Biological water treatment
dc.subject.otherIndex Cathodes
dc.subject.otherIndex Electric generators
dc.subject.otherIndex Genes
dc.subject.otherIndex Microbial fuel cells
dc.subject.otherIndex Nitrification
dc.subject.otherIndex Nitrogen removal
dc.subject.otherIndex RNA
dc.subject.otherIndex Denitrification
dc.subject.otherIndex bacterial DNA
dc.subject.otherIndex nitrogen
dc.subject.otherIndex RNA 16S
dc.subject.otherIndex abundance
dc.subject.otherIndex alternative energy
dc.subject.otherIndex ammonia
dc.subject.otherIndex bioreactor
dc.subject.otherIndex biotechnology
dc.subject.otherIndex chemical composition
dc.subject.otherIndex chemical oxygen demand
dc.subject.otherIndex community structure
dc.subject.otherIndex denitrification
dc.subject.otherIndex electrochemical method
dc.subject.otherIndex fuel cell
dc.subject.otherIndex genetic analysis
dc.subject.otherIndex microbial activity
dc.subject.otherIndex microbial community
dc.subject.otherIndex nitrification
dc.subject.otherIndex nitrogen
dc.subject.otherIndex pollutant removal
dc.subject.otherIndex power generation
dc.subject.otherIndex reaction kinetics
dc.subject.otherIndex recycling
dc.subject.otherIndex species diversity
dc.subject.otherIndex wastewater
dc.subject.otherIndex article
dc.subject.otherIndex bacterium detection
dc.subject.otherIndex bioelectrochemical contactor
dc.subject.otherIndex bioreactor equipment
dc.subject.otherIndex chemical analysis
dc.subject.otherIndex Comamonas
dc.subject.otherIndex denitrification
dc.subject.otherIndex Geobacter
dc.subject.otherIndex microbial community
dc.subject.otherIndex microbial fuel cell
dc.subject.otherIndex nitrification
dc.subject.otherIndex Nitrosomonas
dc.subject.otherIndex Nitrospira
dc.subject.otherIndex nonhuman
dc.subject.otherIndex priority journal
dc.subject.otherIndex pyrosequencing
dc.subject.otherIndex Thauera
dc.subject.otherIndex Acetic Acid
dc.subject.otherIndex Bioreactors
dc.subject.otherIndex Comamonas
dc.subject.otherIndex Denitrification
dc.subject.otherIndex Electrochemical Techniques
dc.subject.otherIndex Geobacter
dc.subject.otherIndex Hydrology
dc.subject.otherIndex Molecular Typing
dc.subject.otherIndex Nitrification
dc.subject.otherIndex Nitrogen
dc.subject.otherIndex Nitrosomonas
dc.subject.otherIndex Oxygen
dc.subject.otherIndex Phylogeny
dc.subject.otherIndex Proteobacteria
dc.subject.otherIndex Quaternary Ammonium Compounds
dc.subject.otherIndex RNA, Bacterial
dc.subject.otherIndex RNA, Ribosomal, 16S
dc.subject.otherIndex Thauera
dc.subject.otherIndex Waste Water
dc.subject.otherIndex Water Pollutants, Chemical
dc.subject.otherIndex Water Purification
dc.subject.otherIndex Bacteria (microorganisms)
dc.subject.otherIndex Comamonas
dc.subject.otherIndex Geobacter
dc.subject.otherIndex Nitrosomonas
dc.subject.otherIndex Nitrospira
dc.subject.otherIndex Thauera
dc.subject.otherKeywordPlus MICROBIAL FUEL-CELLS
dc.subject.otherKeywordPlus NITROSPIRA-LIKE BACTERIA
dc.subject.otherKeywordPlus WATER TREATMENT PLANTS
dc.subject.otherKeywordPlus 16S RIBOSOMAL-RNA
dc.subject.otherKeywordPlus ELECTRICITY-GENERATION
dc.subject.otherKeywordPlus WASTE-WATER
dc.subject.otherKeywordPlus SIMULTANEOUS NITRIFICATION
dc.subject.otherKeywordPlus AIR-CATHODE
dc.subject.otherKeywordPlus STEP-FEED
dc.subject.otherKeywordPlus DIVERSITY
dc.subject.otherWOS Engineering, Environmental
dc.subject.otherWOS Environmental Sciences
dc.subject.otherWOS Water Resources


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


Browse

My Account