dc.contributor.author | Sayess R.R. |
dc.contributor.author | Saikaly P.E. |
dc.contributor.author | El-Fadel M. |
dc.contributor.author | Li D. |
dc.contributor.author | Semerjian L. |
dc.contributor.editor | |
dc.date | 2013 |
dc.date.accessioned | 2017-10-04T11:04:42Z |
dc.date.available | 2017-10-04T11:04:42Z |
dc.date.issued | 2013 |
dc.identifier | 10.1016/j.watres.2012.11.023 |
dc.identifier.isbn | |
dc.identifier.issn | 00431354 |
dc.identifier.uri | http://hdl.handle.net/10938/13750 |
dc.description.abstract | Integrating microbial fuel cell (MFC) into rotating biological contactor (RBC) creates an opportunity for enhanced removal of COD and nitrogen coupled with energy generation from wastewater. In this study, a three-stage rotating bioelectrochemical contactor (referred to as RBC-MFC unit) integrating MFC with RBC technology was constructed for simultaneous removal of carbonaceous and nitrogenous compounds and electricity generation from a synthetic medium containing acetate and ammonium. The performance of the RBC-MFC unit was compared to a control reactor (referred to as RBC unit) that was operated under the same conditions but without current generation (i.e. open-circuit mode). The effect of hydraulic loading rate (HLR) and COD-N ratio on the performance of the two units was investigated. At low (3.05 gCOD g-1N) and high COD-N ratio (6.64 gCOD g-1N), both units achieved almost similar COD and ammonia-nitrogen removal. However, the RBC-MFC unit achieved significantly higher denitrification and nitrogen removal compared to the RBC unit indicating improved denitrification at the cathode due to current flow. The average voltage under 1000 Ω external resistance ranged between 0.03 and 0.30 V and between 0.02 and 0.21 V for stages 1 and 2 of the RBC-MFC unit. Pyrosequencing analysis of bacterial 16S rRNA gene revealed high bacterial diversity at the anode and cathode of both units. Genera that play a role in nitrification (Nitrospira; Nitrosomonas), denitrification (Comamonas; Thauera) and electricity generation (Geobacter) were identified at the electrodes. Geobacter was only detected on the anode of the RBC-MFC unit. Nitrifiers and denitrifiers were more abundant in the RBC-MFC unit compared to the RBC unit and were largely present on the cathode of both units suggesting that most of the nitrogen removal occurred at the cathode. © 2012 Elsevier Ltd. |
dc.format.extent | |
dc.format.extent | Pages: (881-894) |
dc.language | English |
dc.publisher | OXFORD |
dc.relation.ispartof | Publication Name: Water Research; Publication Year: 2013; Volume: 47; no. 2; Pages: (881-894); |
dc.relation.ispartofseries | |
dc.relation.uri | |
dc.source | Scopus |
dc.subject.other | |
dc.title | Reactor performance in terms of COD and nitrogen removal and bacterial community structure of a three-stage rotating bioelectrochemical contactor |
dc.type | Article |
dc.contributor.affiliation | Sayess, R.R., Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation | Saikaly, P.E., King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia |
dc.contributor.affiliation | El-Fadel, M., Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation | Li, D., King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia |
dc.contributor.affiliation | Semerjian, L., Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon |
dc.contributor.authorAddress | Saikaly, P.E.; King Abdullah University of Science and Technology, Division of Biological and Environmental Sciences and Engineering, Water Desalination and Reuse Research Center, Thuwal 23955-6900, Saudi Arabia; email: pascal.saikaly@kaust.edu.sa |
dc.contributor.authorCorporate | University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Civil and Environmental Engineering; |
dc.contributor.authorDepartment | Civil and Environmental Engineering |
dc.contributor.authorDivision | |
dc.contributor.authorEmail | pascal.saikaly@kaust.edu.sa |
dc.contributor.faculty | Faculty of Engineering and Architecture |
dc.contributor.authorInitials | Sayess, RR |
dc.contributor.authorInitials | Saikaly, PE |
dc.contributor.authorInitials | El-Fadel, M |
dc.contributor.authorInitials | Li, D |
dc.contributor.authorInitials | Semerjian, L |
dc.contributor.authorOrcidID | |
dc.contributor.authorReprintAddress | Saikaly, PE (reprint author), King Abdullah Univ Sci and Technol, Div Biol and Environm Sci and Engn, Water Desalinat and Reuse Res Ctr, Thuwal 239556900, Saudi Arabia. |
dc.contributor.authorResearcherID | Saikaly, Pascal-G-7958-2014 |
dc.contributor.authorUniversity | American University of Beirut |
dc.description.cited | Aelterman P, 2006, ENVIRON SCI TECHNOL, V40, P3388, DOI 10.1021-es0525511; APHA AWWA, 2005, STANDARD METHODS EXA; Ayoub GM, 2004, WATER RES, V38, P3009, DOI 10.1016-j.watres.204.04.013; Bjornsson L, 2002, MICROBIOL-SGM, V148, P2309; Bond DR, 2002, SCIENCE, V295, P483, DOI 10.1126-science.1066771; BRAY J. ROGER, 1957, ECOL MONOGR, V27, P325, DOI 10.2307-1942268; Butler CS, 2010, APPL MICROBIOL BIOT, V86, P1399, DOI 10.1007-s00253-009-2421-x; Caporaso JG, 2010, BIOINFORMATICS, V26, P266, DOI 10.1093-bioinformatics-btp636; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038-nmeth.f.303; Carrera J, 2004, PROCESS BIOCHEM, V39, P2035, DOI 10.1016-j.procbio.2003.10.005; Cha J, 2010, BIOELECTROCHEMISTRY, V78, P72, DOI 10.1016-j.bioelechem.2009.07.009; Cheng KY, 2011, ENVIRON SCI TECHNOL, V45, P796, DOI 10.1021-es102482j; Clauwaert P, 2008, APPL MICROBIOL BIOT, V79, P901, DOI 10.1007-s00253-008-1522-2; Daims H, 2001, APPL ENVIRON MICROB, V67, P5273, DOI 10.1128-AEM.67.11.5273-5284.2001; Daims H, 2010, MICROBIAL ECOLOGY OF ACTIVATED SLUDGE, P259; Fierer N, 2008, P NATL ACAD SCI USA, V105, P17994, DOI 10.1073-pnas.0807920105; Forney LJ, 2004, CURR OPIN MICROBIOL, V7, P210, DOI 10.1016-j.mib.2004.04.015; Grady Jr CL, 2011, BIOL WASTEWATER TREA; He Z, 2009, ENVIRON SCI TECHNOL, V43, P3391, DOI 10.1021-es803492c; He Z, 2007, BIOSENS BIOELECTRON, V22, P3252, DOI 10.1016-j.bios.2007.01.010; Ishii S, 2008, BIOSCI BIOTECH BIOCH, V72, P286, DOI 10.1271-bbb.70179; Juretschko S, 1998, APPL ENVIRON MICROB, V64, P3042; Kiely PD, 2011, BIORESOURCE TECHNOL, V102, P361, DOI 10.1016-j.biortech.2010.05.017; Kim BH, 2004, APPL MICROBIOL BIOT, V63, P672, DOI 10.1007-s00253-003-1412-6; Liu XW, 2011, BIOTECHNOL BIOENG, V108, P1260, DOI 10.1002-bit.23056; Logan B. E., 2008, MICROBIAL FUEL CELLS; Logan BE, 2006, ENVIRON SCI TECHNOL, V40, P5181, DOI 10.1021-es0605016; Logan BE, 2006, TRENDS MICROBIOL, V14, P512, DOI 10.1016-j.tim.2006.10.003; Logan BE, 2009, NAT REV MICROBIOL, V7, P375, DOI 10.1038-nrmicro2113; Logan BE, 2005, WATER RES, V39, P942, DOI 10.1016-j.watres.2004.11.019; Logan BE, 2012, CHEMSUSCHEM, V5, P988, DOI 10.1002-cssc.201100604; Lozupone C, 2005, APPL ENVIRON MICROB, V71, P8228, DOI 10.1128-AEM.71.12.8228-8235.2005; Lu HB, 2006, WATER RES, V40, P3838, DOI 10.1016-j.watres.2006.09.004; Maixner F, 2006, ENVIRON MICROBIOL, V8, P1487, DOI 10.1111-j.1462-2920.2006.01033.x; Price MN, 2010, PLOS ONE, V5, DOI 10.1371-journal.pone.0009490; Purkhold U, 2000, APPL ENVIRON MICROB, V66, P5368, DOI 10.1128-AEM.66.12.5368-5382.2000; Rabaey K, 2005, TRENDS BIOTECHNOL, V23, P291, DOI 10.1016-j.tibtech.2005.04.008; Rabaey K, 2008, ISME J, V2, P519, DOI 10.1038-ismej.2008.1; Rabaey K, 2005, ENVIRON SCI TECHNOL, V39, P8077, DOI 10.1021-es050986i; Saikaly P, 2003, WATER AIR SOIL POLL, V150, P177, DOI 10.1023-A:1026164530805; Sogin ML, 2006, P NATL ACAD SCI USA, V103, P12115, DOI 10.1073-pnas.0605127103; Sun YM, 2011, BIORESOURCE TECHNOL, V102, P10886, DOI 10.1016-j.biortech.2011.09.038; Tchobanoglous G., 2003, WASTEWATER ENG TREAT; VERHAGEN FJM, 1991, APPL ENVIRON MICROB, V57, P3255; Virdis B, 2010, WATER RES, V44, P2970, DOI 10.1016-j.watres.2010.02.022; Virdis B, 2008, WATER RES, V42, P3013, DOI 10.1016-j.watres.2008.03.017; Wagner M, 2002, ANTON LEEUW INT J G, V81, P665, DOI 10.1023-A:1020586312170; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128-AEM.00062-07; Wang Y, 2009, PLOS ONE, V4, DOI 10.1371-journal.pone.0007401; WARD JH, 1963, J AM STAT ASSOC, V58, P236, DOI 10.2307-2282967; Wei LL, 2012, INT J HYDROGEN ENERG, V37, P1067, DOI 10.1016-j.ijhydene.2011.02.120; Wells CL, 1996, MED MICROBIOLOGY; Xie S, 2011, BIORESOURCE TECHNOL, V102, P348, DOI 10.1016-j.biortech.2010.07.046; Xing DF, 2010, APPL MICROBIOL BIOT, V85, P1575, DOI 10.1007-s00253-009-2240-0; Yamada T, 2006, INT J SYST EVOL MICR, V56, P1331, DOI 10.1099-ijs.0.64169-0; Yan HJ, 2012, WATER RES, V46, P2215, DOI 10.1016-j.watres.2012.01.050; Yu CP, 2011, WATER RES, V45, P1157, DOI 10.1016-j.watres.2010.11.002; Zhang F, 2012, J CHEM TECHNOL BIOT, V87, P153, DOI 10.1002-jctb.2700; Zhao F, 2008, ENVIRON SCI TECHNOL, V42, P4971, DOI 10.1021-es8003766 |
dc.description.citedCount | 9 |
dc.description.citedTotWOSCount | 11 |
dc.description.citedWOSCount | 10 |
dc.format.extentCount | 14 |
dc.identifier.articleNo | |
dc.identifier.coden | WATRA |
dc.identifier.pubmedID | 23219389 |
dc.identifier.scopusID | 84871510081 |
dc.identifier.url | |
dc.publisher.address | THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND |
dc.relation.ispartofConference | |
dc.relation.ispartofConferenceCode | |
dc.relation.ispartofConferenceDate | |
dc.relation.ispartofConferenceHosting | |
dc.relation.ispartofConferenceLoc | |
dc.relation.ispartofConferenceSponsor | |
dc.relation.ispartofConferenceTitle | |
dc.relation.ispartofFundingAgency | |
dc.relation.ispartOfISOAbbr | Water Res. |
dc.relation.ispartOfIssue | 2 |
dc.relation.ispartOfPart | |
dc.relation.ispartofPubTitle | Water Research |
dc.relation.ispartofPubTitleAbbr | Water Res. |
dc.relation.ispartOfSpecialIssue | |
dc.relation.ispartOfSuppl | |
dc.relation.ispartOfVolume | 47 |
dc.source.ID | WOS:000315072600040 |
dc.type.publication | Journal |
dc.subject.otherAuthKeyword | 16S rRNA gene pyrosequencing |
dc.subject.otherAuthKeyword | Denitrification |
dc.subject.otherAuthKeyword | Microbial fuel cell |
dc.subject.otherAuthKeyword | Nitrification |
dc.subject.otherAuthKeyword | Rotating bioelectrochemical contactor |
dc.subject.otherAuthKeyword | Rotating biological contactor |
dc.subject.otherChemCAS | nitrogen, 7727-37-9 |
dc.subject.otherChemCAS | Acetic Acid, 64-19-7 |
dc.subject.otherChemCAS | Nitrogen, 7727-37-9 |
dc.subject.otherChemCAS | Oxygen, 7782-44-7 |
dc.subject.otherChemCAS | Quaternary Ammonium Compounds |
dc.subject.otherChemCAS | RNA, Bacterial |
dc.subject.otherChemCAS | RNA, Ribosomal, 16S |
dc.subject.otherChemCAS | Waste Water |
dc.subject.otherChemCAS | Water Pollutants, Chemical |
dc.subject.otherIndex | 16S rRNA gene |
dc.subject.otherIndex | Ammonia-nitrogen |
dc.subject.otherIndex | Bacterial community structure |
dc.subject.otherIndex | Bacterial diversity |
dc.subject.otherIndex | COD-N ratios |
dc.subject.otherIndex | Control reactors |
dc.subject.otherIndex | Current flows |
dc.subject.otherIndex | Current generation |
dc.subject.otherIndex | Denitrifiers |
dc.subject.otherIndex | Electricity generation |
dc.subject.otherIndex | Energy generations |
dc.subject.otherIndex | External resistance |
dc.subject.otherIndex | Geobacter |
dc.subject.otherIndex | Hydraulic loading rates |
dc.subject.otherIndex | Nitrogenous compounds |
dc.subject.otherIndex | Nitrosomonas |
dc.subject.otherIndex | Nitrospira |
dc.subject.otherIndex | Pyrosequencing |
dc.subject.otherIndex | Reactor performance |
dc.subject.otherIndex | Rotating bioelectrochemical contactor |
dc.subject.otherIndex | Rotating biological contactor |
dc.subject.otherIndex | Simultaneous removal |
dc.subject.otherIndex | Synthetic medium |
dc.subject.otherIndex | Ammonium compounds |
dc.subject.otherIndex | Biological water treatment |
dc.subject.otherIndex | Cathodes |
dc.subject.otherIndex | Electric generators |
dc.subject.otherIndex | Genes |
dc.subject.otherIndex | Microbial fuel cells |
dc.subject.otherIndex | Nitrification |
dc.subject.otherIndex | Nitrogen removal |
dc.subject.otherIndex | RNA |
dc.subject.otherIndex | Denitrification |
dc.subject.otherIndex | bacterial DNA |
dc.subject.otherIndex | nitrogen |
dc.subject.otherIndex | RNA 16S |
dc.subject.otherIndex | abundance |
dc.subject.otherIndex | alternative energy |
dc.subject.otherIndex | ammonia |
dc.subject.otherIndex | bioreactor |
dc.subject.otherIndex | biotechnology |
dc.subject.otherIndex | chemical composition |
dc.subject.otherIndex | chemical oxygen demand |
dc.subject.otherIndex | community structure |
dc.subject.otherIndex | denitrification |
dc.subject.otherIndex | electrochemical method |
dc.subject.otherIndex | fuel cell |
dc.subject.otherIndex | genetic analysis |
dc.subject.otherIndex | microbial activity |
dc.subject.otherIndex | microbial community |
dc.subject.otherIndex | nitrification |
dc.subject.otherIndex | nitrogen |
dc.subject.otherIndex | pollutant removal |
dc.subject.otherIndex | power generation |
dc.subject.otherIndex | reaction kinetics |
dc.subject.otherIndex | recycling |
dc.subject.otherIndex | species diversity |
dc.subject.otherIndex | wastewater |
dc.subject.otherIndex | article |
dc.subject.otherIndex | bacterium detection |
dc.subject.otherIndex | bioelectrochemical contactor |
dc.subject.otherIndex | bioreactor equipment |
dc.subject.otherIndex | chemical analysis |
dc.subject.otherIndex | Comamonas |
dc.subject.otherIndex | denitrification |
dc.subject.otherIndex | Geobacter |
dc.subject.otherIndex | microbial community |
dc.subject.otherIndex | microbial fuel cell |
dc.subject.otherIndex | nitrification |
dc.subject.otherIndex | Nitrosomonas |
dc.subject.otherIndex | Nitrospira |
dc.subject.otherIndex | nonhuman |
dc.subject.otherIndex | priority journal |
dc.subject.otherIndex | pyrosequencing |
dc.subject.otherIndex | Thauera |
dc.subject.otherIndex | Acetic Acid |
dc.subject.otherIndex | Bioreactors |
dc.subject.otherIndex | Comamonas |
dc.subject.otherIndex | Denitrification |
dc.subject.otherIndex | Electrochemical Techniques |
dc.subject.otherIndex | Geobacter |
dc.subject.otherIndex | Hydrology |
dc.subject.otherIndex | Molecular Typing |
dc.subject.otherIndex | Nitrification |
dc.subject.otherIndex | Nitrogen |
dc.subject.otherIndex | Nitrosomonas |
dc.subject.otherIndex | Oxygen |
dc.subject.otherIndex | Phylogeny |
dc.subject.otherIndex | Proteobacteria |
dc.subject.otherIndex | Quaternary Ammonium Compounds |
dc.subject.otherIndex | RNA, Bacterial |
dc.subject.otherIndex | RNA, Ribosomal, 16S |
dc.subject.otherIndex | Thauera |
dc.subject.otherIndex | Waste Water |
dc.subject.otherIndex | Water Pollutants, Chemical |
dc.subject.otherIndex | Water Purification |
dc.subject.otherIndex | Bacteria (microorganisms) |
dc.subject.otherIndex | Comamonas |
dc.subject.otherIndex | Geobacter |
dc.subject.otherIndex | Nitrosomonas |
dc.subject.otherIndex | Nitrospira |
dc.subject.otherIndex | Thauera |
dc.subject.otherKeywordPlus | MICROBIAL FUEL-CELLS |
dc.subject.otherKeywordPlus | NITROSPIRA-LIKE BACTERIA |
dc.subject.otherKeywordPlus | WATER TREATMENT PLANTS |
dc.subject.otherKeywordPlus | 16S RIBOSOMAL-RNA |
dc.subject.otherKeywordPlus | ELECTRICITY-GENERATION |
dc.subject.otherKeywordPlus | WASTE-WATER |
dc.subject.otherKeywordPlus | SIMULTANEOUS NITRIFICATION |
dc.subject.otherKeywordPlus | AIR-CATHODE |
dc.subject.otherKeywordPlus | STEP-FEED |
dc.subject.otherKeywordPlus | DIVERSITY |
dc.subject.otherWOS | Engineering, Environmental |
dc.subject.otherWOS | Environmental Sciences |
dc.subject.otherWOS | Water Resources |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |