dc.contributor.author |
Harajli M.H. |
dc.contributor.author |
Hantouche E. |
dc.contributor.author |
Soudki K. |
dc.contributor.editor |
|
dc.date |
2006 |
dc.date.accessioned |
2017-10-04T11:04:50Z |
dc.date.available |
2017-10-04T11:04:50Z |
dc.date.issued |
2006 |
dc.identifier |
|
dc.identifier.isbn |
|
dc.identifier.issn |
08893241 |
dc.identifier.uri |
http://hdl.handle.net/10938/13854 |
dc.description.abstract |
The stress-strain behavior of reinforced polymer (FRP) confined concrete columns was experimentally and analytically investigated, with particular emphasis on rectangular column sections. A new design-oriented model of the stress-strain response of FRP confined columns was developed and an experimental study was carried out for deriving the model characteristic parameters. The test variables included the volumetric ratio of the FRP jackets, the aspect ratio of the column section, and the area of longitudinal and lateral steel reinforcement. It was found that jacketing rectangular column sections with FRP sheets increases their axial strength and ductility. In reinforced concrete columns, the FRP jackets prevent premature failure of the concrete cover and buckling of the steel bars, leading to substantially improved performance. The corresponding improvements become less significant as the aspect ratio of the column section increases. The rate of increase in concrete lateral strain with axial strain is influenced by the stiffness of the FRP jackets and aspect ratio of the column sections. Based on the results of this investigation, the main parameters that control the stress and strain characteristics of FRP-confined rectangular column sections were discussed, and a general design model of the stress-strain response of FRP-confined concrete was generated. The results predicted by the model showed very good agreement with the results of the current experimental program and other test data of FRP-confined circular and rectangular columns reported in the literature. Copyright © 2006, American Concrete Institute. All rights reserved. |
dc.format.extent |
|
dc.format.extent |
Pages: (672-682) |
dc.language |
English |
dc.publisher |
FARMINGTON HILLS |
dc.relation.ispartof |
Publication Name: ACI Structural Journal; Publication Year: 2006; Volume: 103; no. 5; Pages: (672-682); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Stress-strain model for fiber-reinforced polymer jacketed concrete columns |
dc.type |
Article |
dc.contributor.affiliation |
Harajli, M.H., Department of Civil Engineering, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
Hantouche, E., Samir Khairalla and Partners, Lebanon |
dc.contributor.affiliation |
Soudki, K., Department of Innovative Structural Rehabilitation, University of Waterloo, Waterloo, ON, Canada |
dc.contributor.authorAddress |
Harajli, M.H.; Department of Civil Engineering, American University of Beirut, Beirut, Lebanon |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Civil and Environmental Engineering; |
dc.contributor.authorDepartment |
Civil and Environmental Engineering |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
|
dc.contributor.faculty |
Faculty of Engineering and Architecture |
dc.contributor.authorInitials |
Harajli, MH |
dc.contributor.authorInitials |
Hantouche, E |
dc.contributor.authorInitials |
Soudki, K |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Harajli, MH (reprint author), Amer Univ Beirut, Beirut, Lebanon. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
*ACI COMM 440, 2002, ACI4402R02 ACI COMM; Chaallal O, 2003, J COMPOS CONSTR, V7, P200, DOI 10.1061-)ASCD)1090-0268(2003)7:3(200); Cole C, 2001, P 5 INT S FIB REINF, P823; ELWI AA, 1979, J ENG MECH DIV-ASCE, V105, P623; Fam AZ, 2001, ACI STRUCT J, V98, P451; Harajli MH, 2005, J COMPOS CONSTR, V9, P4, DOI 10.1061-(ASCE)1090-0268(2005)9:1(4); HARMON T, 1995, P 2 INT RILEM S FRPR, P584; Karbhari VM, 1997, J MATER CIVIL ENG, V9, P185, DOI 10.1061-(ASCE)0899-1561(1997)9:4(185); Lam L, 2003, CONSTR BUILD MATER, V17, P471, DOI 10.1016-S0950-0618(03)00045-X; Lam L, 2003, J REINF PLAST COMP, V22, P1149, DOI 10.1177-073168403035429; Lam L, 2002, J STRUCT ENG-ASCE, V128, P612, DOI 10.1061-(ASCE)0733-9445(2002)128:5(612); MANDER JB, 1988, J STRUCT ENG-ASCE, V114, P1804; Mirmiran A, 1997, J STRUCT ENG-ASCE, V123, P583, DOI 10.1061-(ASCE)0733-9445(1997)123:5(583); Miyauchi K., 1997, NONMETALLIC FRP REIN, V1, P217; NANNI A, 1994, AM CONCRETE I, P193; PICHER F, 1996, FIBER COMPOSITES INF, P829; REY FJ, 1997, THESIS U PUERTO RICO; Richart F. E., 1928, B U ILLINOIS, V185; Richart FE, 1929, B U ILLINOIS; Rochette P, 2000, J COMPOS CONSTR, V4, P129, DOI 10.1061-(ASCE)1090-0268(2000)4:3(129); SAADATMANESH H, 1994, ACI STRUCT J, V91, P434; Saafi M, 1999, ACI MATER J, V96, P500; Samaan M, 1998, J STRUCT ENG-ASCE, V124, P1025, DOI 10.1061-(ASCE)0733-9445(1998)124:9(1025); Scott BD, 1982, ACI J P, V79, P13; SHEIKH SA, 1980, J STRUCT DIV-ASCE, V106, P1079; Spoelstra MR, 1999, J COMPOS CONSTR, V3, P143, DOI DOI 10.1061-(ASCE)1090-0268(1999)3:3(143); Teng JG, 2004, J STRUCT ENG-ASCE, V130, P1713, DOI 10.1061-(ASCE)0733-9445(2004)130:11(1713); Teng JG, 2002, J STRUCT ENG-ASCE, V128, P1535, DOI 10.1061-(ASCE)0733-9445(2002)128:12(1535); Toutanji HA, 1999, ACI MATER J, V96, P397; Wang YC, 2001, ACI STRUCT J, V98, P377 |
dc.description.citedCount |
30 |
dc.description.citedTotWOSCount |
35 |
dc.description.citedWOSCount |
35 |
dc.format.extentCount |
11 |
dc.identifier.articleNo |
|
dc.identifier.coden |
ASTJE |
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
33748611345 |
dc.identifier.url |
|
dc.publisher.address |
38800 INTERNATIONAL WAY, COUNTRY CLUB DRIVE, PO BOX 9094, FARMINGTON HILLS, MI 48333-9094 USA |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
ACI Struct. J. |
dc.relation.ispartOfIssue |
5 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
ACI Structural Journal |
dc.relation.ispartofPubTitleAbbr |
ACI Struct J |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
103 |
dc.source.ID |
WOS:000239862200004 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Columns |
dc.subject.otherAuthKeyword |
Confined concrete |
dc.subject.otherAuthKeyword |
Ductility |
dc.subject.otherAuthKeyword |
Fiber-reinforced concrete |
dc.subject.otherAuthKeyword |
Polymer |
dc.subject.otherAuthKeyword |
Strain |
dc.subject.otherAuthKeyword |
Stress |
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
Aspect ratio |
dc.subject.otherIndex |
Buckling |
dc.subject.otherIndex |
Fiber reinforced plastics |
dc.subject.otherIndex |
Mathematical models |
dc.subject.otherIndex |
Reinforced concrete |
dc.subject.otherIndex |
Reinforcement |
dc.subject.otherIndex |
Stress analysis |
dc.subject.otherIndex |
Rectangular column sections |
dc.subject.otherIndex |
Stress-strain model |
dc.subject.otherIndex |
Columns (structural) |
dc.subject.otherKeywordPlus |
FRP-CONFINED CONCRETE |
dc.subject.otherKeywordPlus |
RECTANGULAR COLUMNS |
dc.subject.otherKeywordPlus |
BEHAVIOR |
dc.subject.otherKeywordPlus |
STRENGTH |
dc.subject.otherKeywordPlus |
COMPOSITES |
dc.subject.otherKeywordPlus |
DUCTILITY |
dc.subject.otherKeywordPlus |
SHEETS |
dc.subject.otherKeywordPlus |
TUBES |
dc.subject.otherWOS |
Construction and Building Technology |
dc.subject.otherWOS |
Engineering, Civil |
dc.subject.otherWOS |
Materials Science, Multidisciplinary |