Abstract:
In 2003, an experimental research program was initiated at the American University of Beirut with the objectives of (1) evaluating the effectiveness of external fiber-reinforced polymer (FRP) confinement in improving the bond strength of spliced reinforcement in reinforced-concrete (RC) columns and its implications on the lateral load capacity and ductility of the columns under seismic loading; and (2) establishing rational design criteria for bond strengthening of spliced reinforcement using external FRP jackets. This paper presents a discussion of recent experimental results dealing with rectangular columns and the results of a pilot study conducted on circular columns with particular emphasis on aspects related to the bond strength of the spliced column reinforcement. A nonlinear analysis model is developed for predicting the envelope load-drift response, taking into account the effect of FRP confinement on the stress-strain behavior of concrete in compression. Results predicted by the model showed excellent agreement with the test results. Design expressions of the bond strength of spliced bars in FRP-confined concrete were assessed against the current experimental data, and a criterion for seismic FRP strengthening of bond-critical regions in RC members is proposed. © 2008 ASCE.