dc.contributor.author |
Ghali K. |
dc.contributor.author |
Katanani O. |
dc.contributor.author |
Al-Hindi M. |
dc.contributor.editor |
|
dc.date |
2011 |
dc.date.accessioned |
2017-10-04T11:15:48Z |
dc.date.available |
2017-10-04T11:15:48Z |
dc.date.issued |
2011 |
dc.identifier |
10.1016/j.enbuild.2011.04.017 |
dc.identifier.isbn |
|
dc.identifier.issn |
03787788 |
dc.identifier.uri |
http://hdl.handle.net/10938/14835 |
dc.description.abstract |
The use of hygroscopic materials for moisture buffering is a passive way to moderate the variation of indoor humidity. Through absorption and desorption, surface materials in the indoor environment, such as curtains, carpets and wall paper, are able to dampen the moisture variations. The moisture buffering capacity of these materials may be used to improve the relative humidity of the indoor environment at reduced energy costs. The objectives of this paper are threefold. The first objective is to derive a theoretical model for the transient moisture transfer between a curtain system and the indoor air for the case where the curtain is placed in front of a wall. The second objective is to conduct experiments inside environmental chambers to validate the theoretical model and to test the ability of curtains to moderate indoor humidity. It is shown that the experimental results for the curtain moisture uptake and the relative humidity inside the chamber compared well with the model simulation results. The third and final objective is to test and evaluate the model under real environment conditions for a case study of a hygroscopic cotton curtain, placed in a typical office space in the city of Beirut with an area of 25 m2 that uses direct expansion (DX) air conditioning system. It is found that hygroscopic curtains maintain humidity of less than 65percent during part load operation compared to the upper limit of 70percent relative humidity when no curtain is used. On the other hand, it is found that the energy use, as determined by the daily electrical power consumption of the DX system, is almost the same for the two cases, (with and without a curtain), where approximately 20 kWh of energy input is required 13 kWh of sensible energy and 7 kWh of latent energy. © 2011 Elsevier B.V. All rights reserved. |
dc.format.extent |
|
dc.format.extent |
Pages: (2093-2100) |
dc.language |
English |
dc.publisher |
LAUSANNE |
dc.relation.ispartof |
Publication Name: Energy and Buildings; Publication Year: 2011; Volume: 43; no. 9; Pages: (2093-2100); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Modeling the effect of hygroscopic curtains on relative humidity for spaces air conditioned by DX split air conditioning system |
dc.type |
Article |
dc.contributor.affiliation |
Ghali, K., Department of Mechanical Engineering, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon |
dc.contributor.affiliation |
Katanani, O., Department of Mechanical Engineering, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon |
dc.contributor.affiliation |
Al-Hindi, M., Department of Mechanical Engineering, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon |
dc.contributor.authorAddress |
Ghali, K.; Department of Mechanical Engineering, College of Engineering and Architecture, P.O. Box 1107-2020, Beirut, Lebanon; email: ka04@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Mechanical Engineering; |
dc.contributor.authorDepartment |
Mechanical Engineering |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
ka04@aub.edu.lb |
dc.contributor.faculty |
Faculty of Engineering and Architecture |
dc.contributor.authorInitials |
Ghali, K |
dc.contributor.authorInitials |
Katanani, O |
dc.contributor.authorInitials |
Al-Hindi, M |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Ghali, K (reprint author), Amer Univ Beirut, Dept Mech Engn, Coll Engn and Architecture, POB 11-0236, Beirut 11072020, Lebanon. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
Bejan A., 1993, HEAT TRANSFER; Cerolini S, 2009, ENERG BUILDINGS, V41, P164, DOI 10.1016-j.enbuild.2008.08.006; DOE, 1982, LBL11353 DOE; Ghaddar N., 1998, INT J ENERG RES, V32, P523; GHADDAR N, 2008, J HEAT TRANSFER, V130, P1; Ghaddar N, 2005, J HEAT TRANS-T ASME, V127, P287, DOI 10.1115-1.1857949; GRIFFITHS WC, 1989, ENERG ENG, V86, P39; Hameury S, 2005, BUILD ENVIRON, V40, P1400, DOI 10.1016-j.buildenv.2004.10.017; Harriman L., 2001, HUMIDITY CONTROL DES; Henderson HI, 1996, ASHRAE TRAN, V102, P266; Hens HSLC, 2009, ASHRAE TRAN, V115, P88; Holm Andreas H, 2004, ASHRAE T, V110, P820; Laret L., 1980, P 7 INT C HEAT AIR C; Mara TA, 2005, J SOL ENERG-T ASME, V127, P294, DOI 10.1115-1.1862267; Morton W.E., 1975, PHYS PROPERTIES TEXT; ONEAL DL, 1991, ASHRAE TRAN, V97, P316; PENG CSP, 1984, J SOL ENERG-T ASME, V106, P133; Rode C, 2004, J THERMAL ENVELOPE B, V27, P221, DOI 10.1177-1097196304040543; Simonson CJ, 2004, ASHRAE T, V110, P804; Simonson CJ, 2002, INDOOR AIR, V12, P243, DOI 10.1034-j.1600-0668.2002.01128.x; STRAUBE J, 2002, ASHRAE J, P1; SVENNBERG K, 2006, TVBH1016; Toftum J, 1998, ENERG BUILDINGS, V28, P1, DOI 10.1016-S0378-7788(97)00017-0 |
dc.description.citedCount |
2 |
dc.description.citedTotWOSCount |
3 |
dc.description.citedWOSCount |
2 |
dc.format.extentCount |
8 |
dc.identifier.articleNo |
|
dc.identifier.coden |
ENEBD |
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
79960744388 |
dc.identifier.url |
|
dc.publisher.address |
PO BOX 564, 1001 LAUSANNE, SWITZERLAND |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
Energy Build. |
dc.relation.ispartOfIssue |
9 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
Energy and Buildings |
dc.relation.ispartofPubTitleAbbr |
Energy Build. |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
43 |
dc.source.ID |
WOS:000294834900006 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
DX air conditioning system |
dc.subject.otherAuthKeyword |
Hygroscopic moisture absorption of cloth curtains |
dc.subject.otherAuthKeyword |
Indoor relative humidity |
dc.subject.otherAuthKeyword |
Modeling and experimentation |
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
Airconditioning systems |
dc.subject.otherIndex |
Direct expansion |
dc.subject.otherIndex |
Electrical power consumption |
dc.subject.otherIndex |
Energy inputs |
dc.subject.otherIndex |
Energy use |
dc.subject.otherIndex |
Final objective |
dc.subject.otherIndex |
Hygroscopic materials |
dc.subject.otherIndex |
Hygroscopic moisture |
dc.subject.otherIndex |
Indoor air |
dc.subject.otherIndex |
Indoor environment |
dc.subject.otherIndex |
Model simulation |
dc.subject.otherIndex |
Moisture buffering capacity |
dc.subject.otherIndex |
Moisture transfer |
dc.subject.otherIndex |
Moisture uptake |
dc.subject.otherIndex |
Moisture variation |
dc.subject.otherIndex |
Moisture-buffering |
dc.subject.otherIndex |
Office space |
dc.subject.otherIndex |
Part load operation |
dc.subject.otherIndex |
Real environments |
dc.subject.otherIndex |
Reduced energy |
dc.subject.otherIndex |
Relative humidities |
dc.subject.otherIndex |
Surface materials |
dc.subject.otherIndex |
Theoretical models |
dc.subject.otherIndex |
Upper limits |
dc.subject.otherIndex |
Absorption |
dc.subject.otherIndex |
Air conditioning |
dc.subject.otherIndex |
Computer simulation |
dc.subject.otherIndex |
Desorption |
dc.subject.otherIndex |
Environmental chambers |
dc.subject.otherIndex |
Experiments |
dc.subject.otherIndex |
Moisture control |
dc.subject.otherIndex |
Office buildings |
dc.subject.otherIndex |
Driers (materials) |
dc.subject.otherKeywordPlus |
MOISTURE BUFFERING CAPACITY |
dc.subject.otherKeywordPlus |
PART-LOAD CONDITIONS |
dc.subject.otherKeywordPlus |
HEAT-PUMPS |
dc.subject.otherKeywordPlus |
PERFORMANCE |
dc.subject.otherWOS |
Construction and Building Technology |
dc.subject.otherWOS |
Energy and Fuels |
dc.subject.otherWOS |
Engineering, Civil |