dc.contributor.author |
Chakroun W. |
dc.contributor.author |
Ghalib K. |
dc.contributor.author |
Ghaddarb N. |
dc.contributor.editor |
|
dc.date |
2011 |
dc.date.accessioned |
2017-10-04T11:15:49Z |
dc.date.available |
2017-10-04T11:15:49Z |
dc.date.issued |
2011 |
dc.identifier |
10.1016/j.enbuild.2011.06.019 |
dc.identifier.isbn |
|
dc.identifier.issn |
03787788 |
dc.identifier.uri |
http://hdl.handle.net/10938/14842 |
dc.description.abstract |
A transient-contaminant-transport model is developed for assessing IAQ in the breathing zone when introducing return air into rooms conditioned by CC-DV system to save energy. The steady state transport model of [1] is extended to transient conditions while accounting for significant wall plumes associated with external loads. Experiments are performed to validate the extended model predictions of IAQ expressed in the level of CO2 concentration. Experiments are conducted in a chamber with two external walls in Kuwait Climate. Measurements are recorded in time of the air temperature and CO 2 concentration at selected locations in the room and compared with values predicted by the model. Experimental results agreed well with model predictions. The maximum errors in predicted CO2 concentrations are less thanandplusmn;25ppm in presence of external load. 60percent fresh air fraction resulted in 37percent less energy consumption compared with 100percent fresh air CC-DV system. The validated model is applied to a case study in Kuwait to evaluate energy saving over the cooling season for a typical office space while using mixed DV air. Energy savings of up to 20.6percent can be realized using mixed supply air while maintaining IAQ compared with energy used for the 100percent fresh air. © 2011 Elsevier B.V. All rights reserved. |
dc.format.extent |
|
dc.format.extent |
Pages: (2684-2695) |
dc.language |
English |
dc.publisher |
LAUSANNE |
dc.relation.ispartof |
Publication Name: Energy and Buildings; Publication Year: 2011; Volume: 43; no. 10; Pages: (2684-2695); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Air quality in rooms conditioned by chilled ceiling and mixed displacement ventilation for energy saving |
dc.type |
Article |
dc.contributor.affiliation |
Chakroun, W., Department of Mechanical Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait |
dc.contributor.affiliation |
Ghalib, K., Department of Mechanical Engineering, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon |
dc.contributor.affiliation |
Ghaddarb, N., Department of Mechanical Engineering, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon |
dc.contributor.authorAddress |
Chakroun, W.; Department of Mechanical Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait; email: wchakroun@gmail.com |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Mechanical Engineering; |
dc.contributor.authorDepartment |
Mechanical Engineering |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
wchakroun@gmail.com |
dc.contributor.faculty |
Faculty of Engineering and Architecture |
dc.contributor.authorInitials |
Chakroun, W |
dc.contributor.authorInitials |
Ghali, K |
dc.contributor.authorInitials |
Ghaddar, N |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Chakroun, W (reprint author), Kuwait Univ, Dept Mech Engn, POB 5969, Safat 13060, Kuwait. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
American Society of Heating Refrigerating and Air Conditioning Engineers, 2005, ASHRAE HDB FUND; ASHRAE, 2007, 621 ASHRAE ANSI; Ayoub M, 2006, HVACandR RES, V12, P1005, DOI 10.1080-10789669.2006.10391448; Bahman A., 2008, ASHRAE T, V115, P587; Braun J.E., 1989, ASHRAE T, V95, P164; *CARR, 2006, CARR HOURL AN PROGR; Gebhart B., 1988, BUOYANCY INDUCED FLO; GHADDAR N, 2008, ASHRAE T, V115, P574; Ghaddar N, 2010, INT J ENERG RES, V34, P1328, DOI 10.1002-er.1677; Ghali K, 2007, INT J ENERG RES, V31, P743, DOI 10.1002-er.1266; JIANG Z, 1992, ASHRAE TRAN, V98, P33; Kanaan M, 2010, HVACandR RES, V16, P765, DOI 10.1080-10789669.2010.10390933; Keblawi A, 2009, ENERG BUILDINGS, V41, P1155, DOI 10.1016-j.enbuild.2009.05.009; Keblawi A, 2011, ENERG BUILDINGS, V43, P1359, DOI 10.1016-j.enbuild.2011.01.021; KOFOED P, 1991, THESIS AALBORG U, P168; Mesheshwari G.P., 2005, P 3 INT C EN RES DEV, P115; MOSSOLLY M, 2008, ASHRAE T, V115, P541; MUNDT E, 1996, THESIS KTH BYGGFORSK; Nielsen PV, 2007, HVACandR RES, V13, P987, DOI 10.1080-10789669.2007.10391466; Rouse H., 1952, TELLUS, V4, P201, DOI 10.1111-j.2153-3490.1952.tb01005.x; *STAT KUW, 1982, THERM BUILD COD; SUZUKI T, 2007, 6 INT C IND AIR QUAL; Xu M, 2001, INDOOR AIR, V11, P111, DOI 10.1034-j.1600-0668.2001.110205.x; YAMANAKA T, 2002, P ROOMVENT 2002 COP; YAMANAKA T, 2007, ROOMVENT 2007 HELS F; Yuill DP, 2008, HVACandR RES, V14, P345, DOI 10.1080-10789669.2008.10391013 |
dc.description.citedCount |
5 |
dc.description.citedTotWOSCount |
5 |
dc.description.citedWOSCount |
5 |
dc.format.extentCount |
12 |
dc.identifier.articleNo |
|
dc.identifier.coden |
ENEBD |
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
80053320873 |
dc.identifier.url |
|
dc.publisher.address |
PO BOX 564, 1001 LAUSANNE, SWITZERLAND |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
Energy Build. |
dc.relation.ispartOfIssue |
10 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
Energy and Buildings |
dc.relation.ispartofPubTitleAbbr |
Energy Build. |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
43 |
dc.source.ID |
WOS:000295297700016 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Chilled ceiling displacement ventilation |
dc.subject.otherAuthKeyword |
Contaminant transport in plumes |
dc.subject.otherAuthKeyword |
Indoor air quality with mixed return air |
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
Air temperature |
dc.subject.otherIndex |
Breathing zones |
dc.subject.otherIndex |
Chilled ceiling |
dc.subject.otherIndex |
Contaminant transport |
dc.subject.otherIndex |
Displacement ventilation |
dc.subject.otherIndex |
Extended model |
dc.subject.otherIndex |
External loads |
dc.subject.otherIndex |
External walls |
dc.subject.otherIndex |
Fresh air |
dc.subject.otherIndex |
Indoor air quality |
dc.subject.otherIndex |
Maximum error |
dc.subject.otherIndex |
Model prediction |
dc.subject.otherIndex |
Office space |
dc.subject.otherIndex |
Save energy |
dc.subject.otherIndex |
Steady-state transport |
dc.subject.otherIndex |
Transient conditions |
dc.subject.otherIndex |
Air quality |
dc.subject.otherIndex |
Atmospheric composition |
dc.subject.otherIndex |
Energy conservation |
dc.subject.otherIndex |
Energy utilization |
dc.subject.otherIndex |
Experiments |
dc.subject.otherIndex |
Forecasting |
dc.subject.otherIndex |
Indoor air pollution |
dc.subject.otherIndex |
Models |
dc.subject.otherIndex |
Office buildings |
dc.subject.otherIndex |
Ventilation |
dc.subject.otherIndex |
Carbon dioxide |
dc.subject.otherKeywordPlus |
DISTRIBUTION SYSTEMS |
dc.subject.otherKeywordPlus |
OPERATION |
dc.subject.otherKeywordPlus |
DESIGN |
dc.subject.otherKeywordPlus |
MODEL |
dc.subject.otherWOS |
Construction and Building Technology |
dc.subject.otherWOS |
Energy and Fuels |
dc.subject.otherWOS |
Engineering, Civil |