Abstract:
Vortex methods for simulating natural convection of an ideal gas in unbounded two-dimensional domains are presented. In particular, the redistribution method for diffusion is extended to enable simulation of nonlinear diffusion of an ideal gas in isobaric conditions encountered in unbounded low-Mach number flows. We also address the problem of handling source terms in grid-free vortex methods and propose a fast, accurate, and physically motivated method for solving the associated inverse problems. Examples include generation of baroclinic vorticity in nonreacting buoyancy driven flows, and in addition, generation of internal energy and species in buoyant reacting flows. Accuracy and speed of the proposed algorithms for nonlinear diffusion and vorticity generation are investigated separately. Simulations of natural convection of a thermal patch for Grashof number ranging from to 1562.5 to 25000 are presented. Copyright © 2012 by ASME.