Abstract:
The aim of this study is to automatically discern the micro-features in histology slides of cortical bone using pulse coupled neural networks (PCNN). To the best knowledge of the authors, utilizing PCNN in such an application has not been reported in the literature and, as such, constitutes a novel application. The network parameters are optimized using particle swarm optimization (PSO) where the PSO fitness function was introduced as the entropy and energy of the bone micro-constituents extracted from a training image. Another novel contribution is combining the above with the method of adaptive threshold ( T) where the PCNN algorithm is repeated until the best threshold T is found corresponding to the maximum variance between two segmented regions. To illustrate the quality of resulting segmentation according to this methodology, a comparison of the entropy-energy obtained of each pulse is reported. Suitable quality metrics (precision rate, sensitivity, specificity, accuracy, and dice) were used to benchmark the resulting segments against those found by a more traditional method namely K-means. The quality of the segments revealed by this methodology was found to be of much superior quality. Another testament to the quality of this methodology was that the images resulting from testing pulses were found to be of similarly good quality to those of the training images. © 2013 Elsevier Ltd.