Abstract:
This work investigates the effect of various assumptions proposed by the classical Reynolds lubrication equation. In particular, a microplate oscillating at high frequencies (beyond cutoff) and high velocities leading to appreciable displacement within the film gap is studied. An analytical model is derived with special emphasis on the fluid's inertia effect on the fluid-solid interface. By implementing the direct simulation Monte Carlo (DSMC) method, a numerical method for modeling rarefied gas flow, the analytically based model is adjusted for the force exerted by the gas on the oscillating micro-structure to capture various significant effects related to the fluid's inertia, compressibility, stiffness, and damping. Copyright © 2014 by ASME.