dc.contributor.author |
Saleh R. |
dc.contributor.author |
Shihadeh A. |
dc.contributor.editor |
|
dc.date |
2007 |
dc.date.accessioned |
2017-10-04T11:16:04Z |
dc.date.available |
2017-10-04T11:16:04Z |
dc.date.issued |
2007 |
dc.identifier |
10.1016/j.jaerosci.2006.07.008 |
dc.identifier.isbn |
|
dc.identifier.issn |
00218502 |
dc.identifier.uri |
http://hdl.handle.net/10938/15039 |
dc.description.abstract |
This study demonstrates an experimental method for using temperature measurements as a means for validating computations of particle size distribution in a growing or evaporating high-concentration aerosol flowing in a tube with wall heat and mass transfer. The method is based on the premise that aggregate growth or condensation from an ensemble of aerosol droplets can be inferred by comparing temperature evolution of an aerosol-laden and aerosol-free flow through a heated or cooled tube. The difference in bulk temperature is used as an indicator of latent heat effect which is directly related to condensational and evaporative particle size changes. Dimensional analysis is used to derive the conditions under which such an approach can be used. Two parameters, the coupling number and the dimensionless mass concentration are found to govern the sensitivity of continuous phase temperature to aggregate evaporation or condensation of the droplet ensemble, and the sensitivity of temperature to droplet diameter changes, respectively. Experimental data for an aqueous saline aerosol flowing through a heated, constant wall temperature tube are presented and compared to predictions derived using a Lagrangian plug-flow model with a fully moving particle bin structure. Measured and predicted bulk phase temperatures agree to within 3percent. Using sensitivity analysis, it is shown that hygroscopic particle diameter changes will be at least as accurate. © 2006 Elsevier Ltd. All rights reserved. |
dc.format.extent |
|
dc.format.extent |
Pages: (1-16) |
dc.language |
English |
dc.publisher |
OXFORD |
dc.relation.ispartof |
Publication Name: Journal of Aerosol Science; Publication Year: 2007; Volume: 38; no. 1; Pages: (1-16); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Hygroscopic growth and evaporation in an aerosol with boundary heat and mass transfer |
dc.type |
Article |
dc.contributor.affiliation |
Saleh, R., Aerosol Research Laboratory, Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
Shihadeh, A., Aerosol Research Laboratory, Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon |
dc.contributor.authorAddress |
Shihadeh, A.; Aerosol Research Laboratory, Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon; email: as20@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Mechanical Engineering; |
dc.contributor.authorDepartment |
Mechanical Engineering |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
as20@aub.edu.lb |
dc.contributor.faculty |
Faculty of Engineering and Architecture |
dc.contributor.authorInitials |
Saleh, R |
dc.contributor.authorInitials |
Shihadeh, A |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Shihadeh, A (reprint author), Amer Univ Beirut, Aerosol Res Lab, Dept Mech Engn, Beirut, Lebanon. |
dc.contributor.authorResearcherID |
Shihadeh, Alan-F-1646-2011 |
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
BROUWERS HJH, 1990, INT J HEAT MASS TRAN, V35, P1; Ferron G. A., 1977, Journal of Aerosol Science, V8, DOI 10.1016-0021-8502(77)90045-3; Finlay WH, 1999, J AEROSOL SCI, V30, P105, DOI 10.1016-S0021-8502(98)00024-X; FINLAY WH, 2001, MECH INHALED PHARM; FINLAY WH, 1995, J AEROSOL SCI, V26, P655, DOI 10.1016-0021-8502(94)00132-I; Finlay WH, 1998, J AEROSOL MED, V11, P221, DOI 10.1089-jam.1998.11.221; Fuchs N. A, 1970, HIGHLY DISPERSED AER; Hennig T, 2005, J AEROSOL SCI, V36, P1210, DOI 10.1016-j.jaerosci.2005.01.005; HICKS JF, 1989, J AEROSOL SCI, V20, P289, DOI 10.1016-0021-8502(89)90004-9; Incropera F. P., 2002, FUNDAMENTALS HEAT MA; Jacobson M., 2000, FUNDAMENTALS ATMOSPH; MAXWELL JC, 1890, SCI PAPERS C MAXWELL; Park SH, 2001, J AEROSOL SCI, V32, P187, DOI 10.1016-S0021-8502(00)00076-8; Pope S. B., 2000, TURBULENT FLOWS; ROTH C, 1996, PARTICLE SYSTEMS CHA, V13, P289; Seinfeld J.H., 1997, ATMOSPHERIC CHEM PHY; SOMMERFELD M, 1993, INT J MULTIPHAS FLOW, V19, P1093, DOI 10.1016-0301-9322(93)90080-E |
dc.description.citedCount |
10 |
dc.description.citedTotWOSCount |
11 |
dc.description.citedWOSCount |
11 |
dc.format.extentCount |
16 |
dc.identifier.articleNo |
|
dc.identifier.coden |
JALSB |
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
33845586500 |
dc.identifier.url |
|
dc.publisher.address |
THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
J. Aerosol. Sci. |
dc.relation.ispartOfIssue |
1 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
Journal of Aerosol Science |
dc.relation.ispartofPubTitleAbbr |
J. Aerosol Sci. |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
38 |
dc.source.ID |
WOS:000243655300001 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Aerosol measurement |
dc.subject.otherAuthKeyword |
Heat and mass transfer |
dc.subject.otherAuthKeyword |
Hygroscopic growth |
dc.subject.otherAuthKeyword |
Nebulizer |
dc.subject.otherAuthKeyword |
Particle size distribution |
dc.subject.otherAuthKeyword |
Plug flow |
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
Condensation |
dc.subject.otherIndex |
Evaporation |
dc.subject.otherIndex |
Growth (materials) |
dc.subject.otherIndex |
Heat transfer |
dc.subject.otherIndex |
Mass transfer |
dc.subject.otherIndex |
Particle size analysis |
dc.subject.otherIndex |
Temperature measurement |
dc.subject.otherIndex |
Aerosol measurement |
dc.subject.otherIndex |
Hygroscopic growth |
dc.subject.otherIndex |
Nebulizer |
dc.subject.otherIndex |
Plug flow |
dc.subject.otherIndex |
Aerosols |
dc.subject.otherIndex |
aerosol |
dc.subject.otherIndex |
condensation |
dc.subject.otherIndex |
evaporation |
dc.subject.otherIndex |
hygroscopicity |
dc.subject.otherIndex |
latent heat flux |
dc.subject.otherIndex |
mass transfer |
dc.subject.otherIndex |
particle size |
dc.subject.otherIndex |
size distribution |
dc.subject.otherIndex |
aerosol |
dc.subject.otherIndex |
article |
dc.subject.otherIndex |
chemical structure |
dc.subject.otherIndex |
evaporation |
dc.subject.otherIndex |
heat |
dc.subject.otherIndex |
molecular model |
dc.subject.otherIndex |
particle size |
dc.subject.otherIndex |
priority journal |
dc.subject.otherIndex |
sensitivity analysis |
dc.subject.otherIndex |
temperature measurement |
dc.subject.otherIndex |
temperature sensitivity |
dc.subject.otherIndex |
validation process |
dc.subject.otherIndex |
wettability |
dc.subject.otherKeywordPlus |
DROPLETS |
dc.subject.otherKeywordPlus |
PHASE |
dc.subject.otherWOS |
Engineering, Chemical |
dc.subject.otherWOS |
Engineering, Mechanical |
dc.subject.otherWOS |
Environmental Sciences |
dc.subject.otherWOS |
Meteorology and Atmospheric Sciences |