dc.contributor.author |
Ghali K. |
dc.contributor.author |
Ghaddar N. |
dc.contributor.author |
Ayoub M. |
dc.contributor.editor |
|
dc.date |
2007 |
dc.date.accessioned |
2017-10-04T11:16:05Z |
dc.date.available |
2017-10-04T11:16:05Z |
dc.date.issued |
2007 |
dc.identifier |
10.1002/er.1266 |
dc.identifier.isbn |
|
dc.identifier.issn |
|
dc.identifier.uri |
http://hdl.handle.net/10938/15049 |
dc.description.abstract |
This paper studies the design and performance of cooled ceiling and displacement ventilation (CC-DV) systems application for buildings in Beirut for the purpose of saving energy. The transient thermal response of spaces cooled by the combined CC-DV system is needed for performance assessment. For that reason, the plume-multi-layer model of CC-DV cooled spaces is extended to transient applications. A design procedure for the combined CC-DV system in Beirut humid climate and buildings is developed to insure that both indoor air quality and comfort are satisfied within the conditioned zone. The contribution of the proposed procedure is that it guarantees that the stratification height (occupied zone) is at 1.1 m taking into consideration the plumes from internal sources and non-isothermal walls. The design procedure is applied to a case study in Beirut to design a system for a typical office space at 85 W m-2 sensible cooling load. The CC-DV system size is compared with the size of a conventional mixed convection system. It is found that the size of the CC-DV system is 10.2 kW compared to conventional system size of 7.9 and 13.4 kW at the 30 and 100percent fresh air supply, respectively. For the same indoor air quality and thermal comfort level, the CC-DV system consumed 21percent less cooling energy than the conventional 100percent fresh air system over the cooling season. The initial cost of the CC-DV system is higher, but the pay back period based on transient operation is less than 5 yr. Copyright © 2006 John Wiley andamp; Sons, Ltd. |
dc.format.extent |
|
dc.format.extent |
Pages: (743-759) |
dc.language |
English |
dc.publisher |
CHICHESTER |
dc.relation.ispartof |
Publication Name: International Journal of Energy Research; Publication Year: 2007; Volume: 31; no. 8; Pages: (743-759); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Chilled ceiling and displacement ventilation system for energy savings: A case study |
dc.type |
Article |
dc.contributor.affiliation |
Ghali, K., Department of Mechanical Engineering, Beirut Arab University, Beirut, Lebanon |
dc.contributor.affiliation |
Ghaddar, N., Department of Mechanical Engineering, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon |
dc.contributor.affiliation |
Ayoub, M., Department of Mechanical Engineering, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon |
dc.contributor.authorAddress |
Ghaddar, N.; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Riad El Solh, Beirut 1107 2020, Lebanon; email: farah@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Mechanical Engineering; |
dc.contributor.authorDepartment |
Mechanical Engineering |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
farah@aub.edu.lb |
dc.contributor.faculty |
Faculty of Engineering and Architecture |
dc.contributor.authorInitials |
Ghali, K |
dc.contributor.authorInitials |
Ghaddar, N |
dc.contributor.authorInitials |
Ayoub, M |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Ghaddar, N (reprint author), Amer Univ Beirut, Fac Engn and Architecture, Dept Mech Engn, POB 11-236,Riad El Solh, Beirut 1107 2020, Lebanon. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
ASHRAE, 2005, ASHRAE HDB FUND; AYOUB M, 2006, ASHRAE INT J HVAC R, V12, P57; Behne M, 1999, ENERG BUILDINGS, V30, P155, DOI 10.1016-S0378-7788(98)00083-8; Chedid R, 2001, INT J ENERG RES, V25, P355, DOI 10.1002-er.688; Fanger PO, 1982, THERMAL COMFORT ANAL, P156; *FLUENT INC, 2002, AIRP 2 1 COMP FLUID; Ghaddar N., 1998, INT J ENERG RES, V32, P523; JIANG Z, 1992, ASHRAE TRAN, V98, P33; KILKIS B, 1990, SOLAR ENERGY DIVISIO, P1; MUNDT E, 2003, THESIS ROYAL I TECHN; Novoselac A, 2002, ENERG BUILDINGS, V34, P497, DOI 10.1016-S0378-7788(01)00134-7; Rees SJ, 2001, BUILD ENVIRON, V36, P753, DOI 10.1016-S0360-1323(00)00067-6; Tan H., 1998, P ROOMV 98, V1, P77; *U WISC MAD SOL EN, 2004, TRNSYS TRANS SIM PRO; Yuan X, 2001, ASHRAE T, V4101, P78 |
dc.description.citedCount |
16 |
dc.description.citedTotWOSCount |
17 |
dc.description.citedWOSCount |
16 |
dc.format.extentCount |
17 |
dc.identifier.articleNo |
|
dc.identifier.coden |
IJERD |
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
35748945737 |
dc.identifier.url |
|
dc.publisher.address |
THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
Int. J. Energy Res. |
dc.relation.ispartOfIssue |
8 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
International Journal of Energy Research |
dc.relation.ispartofPubTitleAbbr |
Int. J. Energy Res. |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
31 |
dc.source.ID |
WOS:000247227000001 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Chilled ceiling |
dc.subject.otherAuthKeyword |
Displacement ventilation |
dc.subject.otherAuthKeyword |
Stratification height |
dc.subject.otherAuthKeyword |
Vertical temperature gradient |
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
Air quality |
dc.subject.otherIndex |
Buildings |
dc.subject.otherIndex |
Energy conservation |
dc.subject.otherIndex |
Thermal comfort |
dc.subject.otherIndex |
Thermal gradients |
dc.subject.otherIndex |
Thermal stratification |
dc.subject.otherIndex |
Chilled ceiling |
dc.subject.otherIndex |
Displacement ventilation |
dc.subject.otherIndex |
Transient thermal response |
dc.subject.otherIndex |
Ventilation |
dc.subject.otherIndex |
Air quality |
dc.subject.otherIndex |
Buildings |
dc.subject.otherIndex |
Energy conservation |
dc.subject.otherIndex |
Thermal comfort |
dc.subject.otherIndex |
Thermal gradients |
dc.subject.otherIndex |
Thermal stratification |
dc.subject.otherIndex |
Ventilation |
dc.subject.otherKeywordPlus |
|
dc.subject.otherWOS |
Energy and Fuels |
dc.subject.otherWOS |
Nuclear Science and Technology |