dc.contributor.author |
Darwish M. |
dc.contributor.author |
Saad T. |
dc.contributor.author |
Hamdan Z. |
dc.contributor.editor |
|
dc.date |
2008 |
dc.date.accessioned |
2017-10-04T11:16:06Z |
dc.date.available |
2017-10-04T11:16:06Z |
dc.date.issued |
2008 |
dc.identifier |
10.1080/10407790802182638 |
dc.identifier.isbn |
|
dc.identifier.issn |
10407790 |
dc.identifier.uri |
http://hdl.handle.net/10938/15060 |
dc.description.abstract |
This article deals with the implementation and performance analysis of a parallel algebraic multigrid solver (pAMG) for a finite-volume, unstructured computational fluid dynamics (CFD) code. The parallelization of the solver is based on the domain decomposition approach using the single program, multiple data paradigm. The Message Passing Interface library (MPI) is used for communication of data. An ILU(0) iterative solver is used for smoothing the errors arising within each partition at the different grid levels, and a multi-level synchronization across the computational domain partitions is enforced in order to improve the performance of the parallelized multigrid solver. Two synchronization strategies are evaluated. In the first the synchronization is applied across the multigrid levels during the restriction step in addition to the base level, while in the second the synchronization is enforced during the restriction and prolongation steps. The effect of gathering the coefficients across partitions for the coarsest level is also investigated. Tests on grids up to 800,000 elements are conducted for a number of diffusion and advection problems on up to 20 processors. Results show that synchronization across partitions for multigrid levels plays an essential role in ensuring good scalability. Furthermore, for a large number of partitions, gathering coefficients across partitions is important to ensure a convergence history that is consistent with the sequential solver, thus yielding the same number of iterations for parallel and sequential runs, which is crucial for retaining high scalability. The shadow-to-core elements ratio is also shown to be a good indicator for scalability. |
dc.format.extent |
|
dc.format.extent |
Pages: (157-185) |
dc.language |
English |
dc.publisher |
PHILADELPHIA |
dc.relation.ispartof |
Publication Name: Numerical Heat Transfer, Part B: Fundamentals; Publication Year: 2008; Volume: 54; no. 2; Pages: (157-185); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Parallelization of an additive multigrid solver |
dc.type |
Article |
dc.contributor.affiliation |
Darwish, M., Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon, Department of Mechanical Engineering, American University of Beirut, Riad El Solh Street, Beirut 1107 2020, Lebanon |
dc.contributor.affiliation |
Saad, T., Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
Hamdan, Z., Department of Civil Engineering, Lebanese University, Tripoli, Lebanon |
dc.contributor.authorAddress |
Darwish, M.; Department of Mechanical Engineering, American University of Beirut, Riad El Solh Street, Beirut 1107 2020, Lebanon; email: darwish@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Mechanical Engineering; |
dc.contributor.authorDepartment |
Mechanical Engineering |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
darwish@aub.edu.lb |
dc.contributor.faculty |
Faculty of Engineering and Architecture |
dc.contributor.authorInitials |
Darwish, M |
dc.contributor.authorInitials |
Saad, T |
dc.contributor.authorInitials |
Hamdan, Z |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Darwish, M (reprint author), Amer Univ Beirut, Dept Mech Engn, POB 11-0236,Riad El Solh St, Beirut 11072020, Lebanon. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
BRANDT A, 1973, P 3 INT C NUM METH F; Brandt A., 1984, MULTIGRID TECHNIQUES; BRANDT A, 1986, APPL MATH COMPUT, V19, P24; Brandt A., 1977, Mathematics of Computation, V31, DOI 10.2307-2006422; Briggs W.L., 1987, MULTIGRID TUTORIAL; BUCKER HM, 2002, ITERATIVELY SOLVING, V10, P521; Burns SP, 1997, NUMER HEAT TR B-FUND, V31, P401, DOI 10.1080-10407799708915117; CONNELL SD, 1994, AIAA J, V32, P1626, DOI 10.2514-3.12152; Dolean V, 2004, PARALLEL COMPUT, V30, P503, DOI 10.1016-j.parco.2004.03.002; Dutto LC, 1997, COMPUT METHOD APPL M, V149, P303, DOI 10.1016-S0045-7825(97)00049-2; Elias SR, 1997, INT J NUMER METH ENG, V40, P887; Fedorenko RP, 1964, USSR COMPUTAT MATH P, V4, P227, DOI DOI 10.1016-0041-5553(64)90253-8; FEDORENKO RP, 1964, COMP MATH MATH PHYS+, V4, P1092; Ferziger J H, 1999, COMPUTATIONAL METHOD; GROPP W, 1992, SIAM PROC S, P349; Gropp WD, 2001, PARALLEL COMPUT, V27, P337, DOI 10.1016-S0167-8191(00)00075-2; GUERRERO MS, 2000, THESIS U POLITECNICA; HACKBUSCH W, 1977, 2 GAMM C NUM METH FL, P50; HUTCHINSON BR, 1988, NUMER HEAT TRANSFER, V13, P133, DOI 10.1080-10407798808551377; HUTCHINSON BR, 1986, NUMER HEAT TRANSFER, V9, P511, DOI 10.1080-10407798608552152; HWANG YH, 1995, NUMER HEAT TR B-FUND, V27, P195, DOI 10.1080-10407799508914953; JANG DS, 1986, NUMER HEAT TRANSFER, V10, P209, DOI 10.1080-10407798608552506; Kanapady R, 1999, NUMER HEAT TR B-FUND, V36, P265; Karypis G, 1998, J PARALLEL DISTR COM, V48, P96, DOI 10.1006-jpdc.1997.1404; Krechel A, 2001, PARALLEL COMPUT, V27, P1009, DOI 10.1016-S0167-8191(01)00080-1; Kwak D, 2005, COMPUT FLUIDS, V34, P283, DOI 10.1016-j.compfluid.2004.05.008; LALLEMAND MH, 1992, COMPUT FLUIDS, V21, P397, DOI 10.1016-0045-7930(92)90047-Y; LONSDALE RD, 1991, NUMERICAL METHODS 2, V7, P1432; MAVRIPLIS D, 1994, 942332 AIAA; MAVRIPLIS DJ, 1999, AIAA J, V37, P393; MAVRIPLIS DJ, 1995, AIAA J, V33, P445, DOI 10.2514-3.12597; MCMANUS K, 1995, STRATEGY MAPPING UNS, V1, P1; Mingyu Wang, 1991, Numerical Heat Transfer, Part B (Fundamentals), V20; Moukalled F, 2000, NUMER HEAT TR B-FUND, V37, P103; PARTHASARATHY V, 1994, AIAA J, V32, P956, DOI 10.2514-3.12080; Patankar S. V., 1980, NUMERICAL HEAT TRANS; PEREZ E, 1985, 442 INRIA; PHILLIPS RE, 1985, NUMER HEAT TRANSFER, V8, P573, DOI 10.1080-10407798508552169; PHILLIPS RE, 1985, NUMER HEAT TRANSFER, V8, P25; POUSSIN FD, 1968, SIAM J NUMER ANAL, V5, P340; Qinghua Wang, 2006, Numerical Heat Transfer, Part B (Fundamentals), V49, DOI 10.1080-10407790500290725; Ruge J.W., 1987, FRONTIERS APPL MATH, V3, P73; Shome B, 2006, NUMER HEAT TR B-FUND, V49, P395, DOI 10.1080-10407790500434117; Smith R. M., 1982, Numerical Heat Transfer, V5, DOI 10.1080-10407798208546996; STUBEN K, 1983, APPL MATH COMPUT, V13, P419, DOI 10.1016-0096-3003(83)90023-1; Sungmo Kang, 2003, Numerical Heat Transfer, Part B (Fundamentals), V43, DOI 10.1080-10407790390122131; Trottenberg U., 2001, MULTIGRID; Van Doormaal J. P., 1985, NAT HEAT TRANSF C DE; Webster R, 2001, INT J NUMER METH FL, V36, P743, DOI 10.1002-fld.153; Wilkinson B., 1999, PARALLEL PROGRAMMING; Yan ZH, 2002, NUMER HEAT TR B-FUND, V41, P191, DOI 10.1080-104077902317240076 |
dc.description.citedCount |
4 |
dc.description.citedTotWOSCount |
4 |
dc.description.citedWOSCount |
4 |
dc.format.extentCount |
29 |
dc.identifier.articleNo |
|
dc.identifier.coden |
NHBFE |
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
45849130177 |
dc.identifier.url |
|
dc.publisher.address |
325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
Numer Heat Tranf. B-Fundam. |
dc.relation.ispartOfIssue |
2 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
Numerical Heat Transfer, Part B: Fundamentals |
dc.relation.ispartofPubTitleAbbr |
Numer Heat Transfer Part B Fundam |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
54 |
dc.source.ID |
WOS:000257057900004 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
|
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
Computational fluid dynamics |
dc.subject.otherIndex |
Convergence of numerical methods |
dc.subject.otherIndex |
Domain decomposition methods |
dc.subject.otherIndex |
Dynamics |
dc.subject.otherIndex |
Fluid dynamics |
dc.subject.otherIndex |
Fluid mechanics |
dc.subject.otherIndex |
Food additives |
dc.subject.otherIndex |
Message passing |
dc.subject.otherIndex |
Partitions (building) |
dc.subject.otherIndex |
Scalability |
dc.subject.otherIndex |
Synchronization |
dc.subject.otherIndex |
Algebraic multigrid solver |
dc.subject.otherIndex |
Applied (CO) |
dc.subject.otherIndex |
Computational domain (CD) |
dc.subject.otherIndex |
Computational fluid dynamics (CFD) codes |
dc.subject.otherIndex |
Convergence (mathematics) |
dc.subject.otherIndex |
Core elements |
dc.subject.otherIndex |
Domain decomposition (D-D) |
dc.subject.otherIndex |
grid levels |
dc.subject.otherIndex |
In order |
dc.subject.otherIndex |
Iterative solvers |
dc.subject.otherIndex |
Message Passing Interface (MPI) |
dc.subject.otherIndex |
Multi grid |
dc.subject.otherIndex |
Multi level (ML) |
dc.subject.otherIndex |
Multi-grid solvers |
dc.subject.otherIndex |
Number of iterations |
dc.subject.otherIndex |
Parallelization |
dc.subject.otherIndex |
performance analyses |
dc.subject.otherIndex |
Single program , multiple data (SPMD) |
dc.subject.otherIndex |
Iterative methods |
dc.subject.otherKeywordPlus |
LARGE-SCALE |
dc.subject.otherKeywordPlus |
FLUID-FLOW |
dc.subject.otherKeywordPlus |
EQUATIONS |
dc.subject.otherKeywordPlus |
AGGLOMERATION |
dc.subject.otherKeywordPlus |
PERFORMANCE |
dc.subject.otherKeywordPlus |
ALGORITHMS |
dc.subject.otherKeywordPlus |
SCHEME |
dc.subject.otherKeywordPlus |
GRIDS |
dc.subject.otherKeywordPlus |
CFD |
dc.subject.otherWOS |
Thermodynamics |
dc.subject.otherWOS |
Mechanics |