dc.contributor.author |
Al-Othmani M. |
dc.contributor.author |
Ghaddar N. |
dc.contributor.author |
Ghali K. |
dc.contributor.editor |
|
dc.date |
2008 |
dc.date.accessioned |
2017-10-04T11:16:06Z |
dc.date.available |
2017-10-04T11:16:06Z |
dc.date.issued |
2008 |
dc.identifier |
10.1016/j.ijheatmasstransfer.2008.04.017 |
dc.identifier.isbn |
|
dc.identifier.issn |
00179310 |
dc.identifier.uri |
http://hdl.handle.net/10938/15064 |
dc.description.abstract |
This paper aims to improve the Salloum et al. multi-node multi-segmented model [M. Salloum, N. Ghaddar, K. Ghali, A new transient bio-heat model of the human body and its integration to clothing models, Int. J. Therm. Sci. 46 (4) (2007) 371-384] to accurately predict the circumferential skin temperature variation of nude and clothed human body segments when subject to complex transient and spatially non-uniform radiative environments. The passive bioheat model segments the body into the 15 cylindrical segments. Each body segment is divided into one core node, six angular skin nodes, one artery blood node, and one vein blood node. The model calculates the blood circulation using the Avolio model [A.P. Avolio, Multi-branched model of the human arterial system, Med. Biol. Eng. Comp. 18 (1980) 709-718] for arteries and arterioles up to 2 mm in diameter and the Olufsen et al., semi-analytical model [M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured tree outflow conditions, Ann. Biomed. Eng. 28 (11) (2000) 1281-1299] for small arteries and arterioles up to a minimum diameter of 0.3 mm; thus improving prediction of blood perfusion rates in the skin. Unsteady bioheat equations are simultaneously solved for the nodes of each body segment to predict the skin, tympanic, and core temperatures, sweat rates, and the dry and latent heat losses. The nude body thermal model is integrated to a clothing model that takes into consideration the moisture adsorption by the fibers to predict heat and mass diffusion through the clothing layers. The clothing layer is divided into six parts that are aligned to the skin sub-nodes for each clothed segment. The local and mean skin temperature can then be estimated in response to non-uniform environments. The nude body and the clothed model predictions were compared with published experimental data at a variety of ambient conditions, non-uniform conditions and activity levels. The current model agreed well with experimental data during transitions from hot to cold, dry to humid environments, and in asymmetric radiative environments. Both the nude and clothed human models have an accuracy of less than 6percent for the whole-body heat gains or losses; the nude human model has an accuracy of ±0.35 °C for skin temperature values. © 2008 Elsevier Ltd. All rights reserved. |
dc.format.extent |
|
dc.format.extent |
Pages: (5522-5533) |
dc.language |
English |
dc.publisher |
OXFORD |
dc.relation.ispartof |
Publication Name: International Journal of Heat and Mass Transfer; Publication Year: 2008; Volume: 51; Pages: (5522-5533); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
A multi-segmented human bioheat model for transient and asymmetric radiative environments |
dc.type |
Article |
dc.contributor.affiliation |
Al-Othmani, M., Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon |
dc.contributor.affiliation |
Ghaddar, N., Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon |
dc.contributor.affiliation |
Ghali, K., Department of Mechanical Engineering, Beirut Arab University, Beirut, Lebanon |
dc.contributor.authorAddress |
Ghaddar, N.; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon; email: farah@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Mechanical Engineering; |
dc.contributor.authorDepartment |
Mechanical Engineering |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
farah@aub.edu.lb |
dc.contributor.faculty |
Faculty of Engineering and Architecture |
dc.contributor.authorInitials |
Al-Othmani, M |
dc.contributor.authorInitials |
Ghaddar, N |
dc.contributor.authorInitials |
Ghali, K |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Ghaddar, N (reprint author), Amer Univ Beirut, Fac Engn and Architecture, Dept Mech Engn, POB 11-0236, Beirut 11072020, Lebanon. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
ANLIKER M, 1971, Z ANGEW MATH PHYS, V22, P217, DOI 10.1007-BF01591407; Arens E, 2006, J THERM BIOL, V31, P60, DOI 10.1016-j.jtherbio.2005.11.027; ASHRAE (American Society of Heating Refrigeration and Air Conditioning Engineers), 2001, HDB FUND; AVOLIO AP, 1980, MED BIOL ENG COMPUT, V18, P709, DOI 10.1007-BF02441895; BAUMAN F, 1998, FIELD STUDY PEM PERS; Conceicao EZE, 2006, HVACandR RES, V12, P451, DOI 10.1080-10789669.2006.10391189; FANGER BO, 1982, THERMAL COMFORT ANAL; Fanger P. O., 1980, ASHRAE T, V86, P141; Fiala D, 2001, INT J BIOMETEOROL, V45, P143, DOI 10.1007-s004840100099; Frank SM, 1999, J APPL PHYSIOL, V86, P1588; Fu G, 1995, THESIS KANSAS STATE; GAGGE AP, 1973, BIOASTRONAUTICS DATA; Ganong WF, 1983, REV MED PHYSL; Ghaddar N, 2006, HEAT TRANSFER ENG, V27, P29, DOI 10.1080-01457630600742480; Ghali K, 2008, BUILD ENVIRON, V43, P1241, DOI 10.1016-j.buildenv.2007.03.008; GORDON RG, 1976, IEEE T BIO-MED ENG, V23, P434, DOI 10.1109-TBME.1976.324601; GROSS U, 1981, LETT HEAT MASS TRANS, V8, P219, DOI 10.1016-0094-4548(81)90016-3; HALL JF, 1967, J APPL PHYSIOL, V23, P540; HAVENITH G, 2000, J APPL PHYS, V90; HE Q, 1996, THESIS KANSAS STATE; HOLMAN JP, 1997, HEAT TRANSFER, pCH8; HOWELL RH, 1990, ASHRAE T, V96, P562; Huizenga C, 2004, J THERM BIOL, V29, P549, DOI 10.1016-j.jtherbio.2004.08.024; Huizenga C, 2001, BUILD ENVIRON, V36, P691, DOI 10.1016-S0360-1323(00)00061-5; Iyoho AE, 2004, P AMER CONTR CONF, P4366; JONES BW, 1992, ASHRAE TRAN, V98, P189; JONES BW, 1999, 33 THERM C 28 JUN 1; Kakitsuba N, 2004, J THERM BIOL, V29, P739, DOI 10.1016-j.jtherbio.2004.08.048; KRISHNAPRAKAS CK, 1997, AIAA J THERMOPHYS HE, V11, P480; McCullogh E., 1985, ASHRAE T, V91, P29; McCullough EA, 1989, ASHRAE T, V95, P316; MILLS CJ, 1970, CARDIOVASC RES, V4, P405, DOI 10.1093-cvr-4.4.405; Milnor W., 1989, HEMODYNAMICS; MUNGCHAROEN T, 1989, AICHE SYM S, V85, P394; Olufsen M.S., 1999, AM J PHYSIOL, P257; Olufsen MS, 2000, ANN BIOMED ENG, V28, P1281, DOI 10.1114-1.1326031; OLUSFEN M, 1998, THESIS ROSKLIDE U; PENNES HH, 1948, J APPL PHYS, V1; RAVEN P R, 1970, International Journal of Biometeorology, V14, P309, DOI 10.1007-BF01742075; Sakoi T, 2007, BUILD ENVIRON, V42, P3984, DOI 10.1016-j.buildenv.2006.10.050; Salloum M, 2007, INT J THERM SCI, V46, P371, DOI 10.1016-j.ijthermalsci.2006.06.017; Segers P., 1998, CARDIOVASC ENG, V3, P48; Shitzer A, 1985, HEAT TRANSFER MED BI; Smith CE, 1991, THESIS KANSAS STATE; STERGIOPULOS N, 1992, J BIOMECH, V25, P1477, DOI 10.1016-0021-9290(92)90060-E; STEVENS S, 2002, MATH BIOSCI, P201; STOLWIJK JAJ, 1970, MATH MODEL THERMOREG; STOLWIJK JA, 1966, PFLUG ARCH GES PHYS, V291, P129, DOI 10.1007-BF00412787; Tanabe S, 2002, ENERG BUILDINGS, V34, P637, DOI 10.1016-S0378-7788(02)00014-2; WANG XL, 1994, THERMAL COMFORT SENS; WEINBAUM S, 1984, J BIOMECH ENG-T ASME, V106, P321; WISSLER EH, 1985, HEAT MASS TRANSFER M; WYNDHAM CH, 1968, PFLUG ARCH EUR J PHY, V303, P14, DOI 10.1007-BF00586824; Zhu SW, 2007, HVACandR RES, V13, P661, DOI 10.1080-10789669.2007.10390978 |
dc.description.citedCount |
12 |
dc.description.citedTotWOSCount |
10 |
dc.description.citedWOSCount |
9 |
dc.format.extentCount |
12 |
dc.identifier.articleNo |
|
dc.identifier.coden |
IJHMA |
dc.identifier.pubmedID |
|
dc.identifier.scopusID |
53049090047 |
dc.identifier.url |
|
dc.publisher.address |
THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
Int. J. Heat Mass Transf. |
dc.relation.ispartOfIssue |
|
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
International Journal of Heat and Mass Transfer |
dc.relation.ispartofPubTitleAbbr |
Int. J. Heat Mass Transf. |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
51 |
dc.source.ID |
WOS:000260755700006 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Circumferential skin temperature |
dc.subject.otherAuthKeyword |
Multi-segment human bioheat model |
dc.subject.otherAuthKeyword |
Skin blood perfusion rates |
dc.subject.otherAuthKeyword |
Spatially non-uniform radiative environments |
dc.subject.otherChemCAS |
|
dc.subject.otherIndex |
Adsorption |
dc.subject.otherIndex |
Blood |
dc.subject.otherIndex |
Cardiovascular system |
dc.subject.otherIndex |
Chlorine compounds |
dc.subject.otherIndex |
Computer simulation |
dc.subject.otherIndex |
Curing |
dc.subject.otherIndex |
Drying |
dc.subject.otherIndex |
Flow simulation |
dc.subject.otherIndex |
Forecasting |
dc.subject.otherIndex |
Hemodynamics |
dc.subject.otherIndex |
Hosiery manufacture |
dc.subject.otherIndex |
Activity levels |
dc.subject.otherIndex |
Ambient conditions |
dc.subject.otherIndex |
Arterial systems |
dc.subject.otherIndex |
Artery blood |
dc.subject.otherIndex |
Bio-heat |
dc.subject.otherIndex |
Bio-heat equations |
dc.subject.otherIndex |
Blood circulation |
dc.subject.otherIndex |
Blood flows |
dc.subject.otherIndex |
Blood perfusion |
dc.subject.otherIndex |
Body segments |
dc.subject.otherIndex |
Circumferential skin temperature |
dc.subject.otherIndex |
Clothing layers |
dc.subject.otherIndex |
Current modeling |
dc.subject.otherIndex |
Experimental data |
dc.subject.otherIndex |
Experimental validations |
dc.subject.otherIndex |
Heat gains |
dc.subject.otherIndex |
Human bodies |
dc.subject.otherIndex |
Human body segments |
dc.subject.otherIndex |
Human modelling |
dc.subject.otherIndex |
Humid environments |
dc.subject.otherIndex |
Latent heat losses |
dc.subject.otherIndex |
Mass diffusion |
dc.subject.otherIndex |
Model predictions |
dc.subject.otherIndex |
Moisture adsorption |
dc.subject.otherIndex |
Multi-segment human bioheat model |
dc.subject.otherIndex |
Numerical simulations |
dc.subject.otherIndex |
Semi-analytical modeling |
dc.subject.otherIndex |
Skin blood perfusion rates |
dc.subject.otherIndex |
Skin temperatures |
dc.subject.otherIndex |
Spatially non-uniform radiative environments |
dc.subject.otherIndex |
Thermal modelling |
dc.subject.otherIndex |
Whole-body |
dc.subject.otherIndex |
Skin |
dc.subject.otherKeywordPlus |
THERMAL COMFORT |
dc.subject.otherKeywordPlus |
HEAT-TRANSFER |
dc.subject.otherKeywordPlus |
MATHEMATICAL-MODEL |
dc.subject.otherKeywordPlus |
TEMPERATURE REGULATION |
dc.subject.otherKeywordPlus |
PARTIAL-BODY |
dc.subject.otherKeywordPlus |
FLOW |
dc.subject.otherKeywordPlus |
SIMULATION |
dc.subject.otherKeywordPlus |
RESPONSES |
dc.subject.otherKeywordPlus |
ARTERIAL |
dc.subject.otherKeywordPlus |
EXPOSURE |
dc.subject.otherWOS |
Thermodynamics |
dc.subject.otherWOS |
Engineering, Mechanical |
dc.subject.otherWOS |
Mechanics |