AUB ScholarWorks

A multi-segmented human bioheat model for transient and asymmetric radiative environments

Show simple item record

dc.contributor.author Al-Othmani M.
dc.contributor.author Ghaddar N.
dc.contributor.author Ghali K.
dc.contributor.editor
dc.date 2008
dc.date.accessioned 2017-10-04T11:16:06Z
dc.date.available 2017-10-04T11:16:06Z
dc.date.issued 2008
dc.identifier 10.1016/j.ijheatmasstransfer.2008.04.017
dc.identifier.isbn
dc.identifier.issn 00179310
dc.identifier.uri http://hdl.handle.net/10938/15064
dc.description.abstract This paper aims to improve the Salloum et al. multi-node multi-segmented model [M. Salloum, N. Ghaddar, K. Ghali, A new transient bio-heat model of the human body and its integration to clothing models, Int. J. Therm. Sci. 46 (4) (2007) 371-384] to accurately predict the circumferential skin temperature variation of nude and clothed human body segments when subject to complex transient and spatially non-uniform radiative environments. The passive bioheat model segments the body into the 15 cylindrical segments. Each body segment is divided into one core node, six angular skin nodes, one artery blood node, and one vein blood node. The model calculates the blood circulation using the Avolio model [A.P. Avolio, Multi-branched model of the human arterial system, Med. Biol. Eng. Comp. 18 (1980) 709-718] for arteries and arterioles up to 2 mm in diameter and the Olufsen et al., semi-analytical model [M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured tree outflow conditions, Ann. Biomed. Eng. 28 (11) (2000) 1281-1299] for small arteries and arterioles up to a minimum diameter of 0.3 mm; thus improving prediction of blood perfusion rates in the skin. Unsteady bioheat equations are simultaneously solved for the nodes of each body segment to predict the skin, tympanic, and core temperatures, sweat rates, and the dry and latent heat losses. The nude body thermal model is integrated to a clothing model that takes into consideration the moisture adsorption by the fibers to predict heat and mass diffusion through the clothing layers. The clothing layer is divided into six parts that are aligned to the skin sub-nodes for each clothed segment. The local and mean skin temperature can then be estimated in response to non-uniform environments. The nude body and the clothed model predictions were compared with published experimental data at a variety of ambient conditions, non-uniform conditions and activity levels. The current model agreed well with experimental data during transitions from hot to cold, dry to humid environments, and in asymmetric radiative environments. Both the nude and clothed human models have an accuracy of less than 6percent for the whole-body heat gains or losses; the nude human model has an accuracy of ±0.35 °C for skin temperature values. © 2008 Elsevier Ltd. All rights reserved.
dc.format.extent
dc.format.extent Pages: (5522-5533)
dc.language English
dc.publisher OXFORD
dc.relation.ispartof Publication Name: International Journal of Heat and Mass Transfer; Publication Year: 2008; Volume: 51; Pages: (5522-5533);
dc.relation.ispartofseries
dc.relation.uri
dc.source Scopus
dc.subject.other
dc.title A multi-segmented human bioheat model for transient and asymmetric radiative environments
dc.type Article
dc.contributor.affiliation Al-Othmani, M., Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
dc.contributor.affiliation Ghaddar, N., Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon
dc.contributor.affiliation Ghali, K., Department of Mechanical Engineering, Beirut Arab University, Beirut, Lebanon
dc.contributor.authorAddress Ghaddar, N.; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107 2020, Lebanon; email: farah@aub.edu.lb
dc.contributor.authorCorporate University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Mechanical Engineering;
dc.contributor.authorDepartment Mechanical Engineering
dc.contributor.authorDivision
dc.contributor.authorEmail farah@aub.edu.lb
dc.contributor.faculty Faculty of Engineering and Architecture
dc.contributor.authorInitials Al-Othmani, M
dc.contributor.authorInitials Ghaddar, N
dc.contributor.authorInitials Ghali, K
dc.contributor.authorOrcidID
dc.contributor.authorReprintAddress Ghaddar, N (reprint author), Amer Univ Beirut, Fac Engn and Architecture, Dept Mech Engn, POB 11-0236, Beirut 11072020, Lebanon.
dc.contributor.authorResearcherID
dc.contributor.authorUniversity American University of Beirut
dc.description.cited ANLIKER M, 1971, Z ANGEW MATH PHYS, V22, P217, DOI 10.1007-BF01591407; Arens E, 2006, J THERM BIOL, V31, P60, DOI 10.1016-j.jtherbio.2005.11.027; ASHRAE (American Society of Heating Refrigeration and Air Conditioning Engineers), 2001, HDB FUND; AVOLIO AP, 1980, MED BIOL ENG COMPUT, V18, P709, DOI 10.1007-BF02441895; BAUMAN F, 1998, FIELD STUDY PEM PERS; Conceicao EZE, 2006, HVACandR RES, V12, P451, DOI 10.1080-10789669.2006.10391189; FANGER BO, 1982, THERMAL COMFORT ANAL; Fanger P. O., 1980, ASHRAE T, V86, P141; Fiala D, 2001, INT J BIOMETEOROL, V45, P143, DOI 10.1007-s004840100099; Frank SM, 1999, J APPL PHYSIOL, V86, P1588; Fu G, 1995, THESIS KANSAS STATE; GAGGE AP, 1973, BIOASTRONAUTICS DATA; Ganong WF, 1983, REV MED PHYSL; Ghaddar N, 2006, HEAT TRANSFER ENG, V27, P29, DOI 10.1080-01457630600742480; Ghali K, 2008, BUILD ENVIRON, V43, P1241, DOI 10.1016-j.buildenv.2007.03.008; GORDON RG, 1976, IEEE T BIO-MED ENG, V23, P434, DOI 10.1109-TBME.1976.324601; GROSS U, 1981, LETT HEAT MASS TRANS, V8, P219, DOI 10.1016-0094-4548(81)90016-3; HALL JF, 1967, J APPL PHYSIOL, V23, P540; HAVENITH G, 2000, J APPL PHYS, V90; HE Q, 1996, THESIS KANSAS STATE; HOLMAN JP, 1997, HEAT TRANSFER, pCH8; HOWELL RH, 1990, ASHRAE T, V96, P562; Huizenga C, 2004, J THERM BIOL, V29, P549, DOI 10.1016-j.jtherbio.2004.08.024; Huizenga C, 2001, BUILD ENVIRON, V36, P691, DOI 10.1016-S0360-1323(00)00061-5; Iyoho AE, 2004, P AMER CONTR CONF, P4366; JONES BW, 1992, ASHRAE TRAN, V98, P189; JONES BW, 1999, 33 THERM C 28 JUN 1; Kakitsuba N, 2004, J THERM BIOL, V29, P739, DOI 10.1016-j.jtherbio.2004.08.048; KRISHNAPRAKAS CK, 1997, AIAA J THERMOPHYS HE, V11, P480; McCullogh E., 1985, ASHRAE T, V91, P29; McCullough EA, 1989, ASHRAE T, V95, P316; MILLS CJ, 1970, CARDIOVASC RES, V4, P405, DOI 10.1093-cvr-4.4.405; Milnor W., 1989, HEMODYNAMICS; MUNGCHAROEN T, 1989, AICHE SYM S, V85, P394; Olufsen M.S., 1999, AM J PHYSIOL, P257; Olufsen MS, 2000, ANN BIOMED ENG, V28, P1281, DOI 10.1114-1.1326031; OLUSFEN M, 1998, THESIS ROSKLIDE U; PENNES HH, 1948, J APPL PHYS, V1; RAVEN P R, 1970, International Journal of Biometeorology, V14, P309, DOI 10.1007-BF01742075; Sakoi T, 2007, BUILD ENVIRON, V42, P3984, DOI 10.1016-j.buildenv.2006.10.050; Salloum M, 2007, INT J THERM SCI, V46, P371, DOI 10.1016-j.ijthermalsci.2006.06.017; Segers P., 1998, CARDIOVASC ENG, V3, P48; Shitzer A, 1985, HEAT TRANSFER MED BI; Smith CE, 1991, THESIS KANSAS STATE; STERGIOPULOS N, 1992, J BIOMECH, V25, P1477, DOI 10.1016-0021-9290(92)90060-E; STEVENS S, 2002, MATH BIOSCI, P201; STOLWIJK JAJ, 1970, MATH MODEL THERMOREG; STOLWIJK JA, 1966, PFLUG ARCH GES PHYS, V291, P129, DOI 10.1007-BF00412787; Tanabe S, 2002, ENERG BUILDINGS, V34, P637, DOI 10.1016-S0378-7788(02)00014-2; WANG XL, 1994, THERMAL COMFORT SENS; WEINBAUM S, 1984, J BIOMECH ENG-T ASME, V106, P321; WISSLER EH, 1985, HEAT MASS TRANSFER M; WYNDHAM CH, 1968, PFLUG ARCH EUR J PHY, V303, P14, DOI 10.1007-BF00586824; Zhu SW, 2007, HVACandR RES, V13, P661, DOI 10.1080-10789669.2007.10390978
dc.description.citedCount 12
dc.description.citedTotWOSCount 10
dc.description.citedWOSCount 9
dc.format.extentCount 12
dc.identifier.articleNo
dc.identifier.coden IJHMA
dc.identifier.pubmedID
dc.identifier.scopusID 53049090047
dc.identifier.url
dc.publisher.address THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
dc.relation.ispartofConference
dc.relation.ispartofConferenceCode
dc.relation.ispartofConferenceDate
dc.relation.ispartofConferenceHosting
dc.relation.ispartofConferenceLoc
dc.relation.ispartofConferenceSponsor
dc.relation.ispartofConferenceTitle
dc.relation.ispartofFundingAgency
dc.relation.ispartOfISOAbbr Int. J. Heat Mass Transf.
dc.relation.ispartOfIssue
dc.relation.ispartOfPart
dc.relation.ispartofPubTitle International Journal of Heat and Mass Transfer
dc.relation.ispartofPubTitleAbbr Int. J. Heat Mass Transf.
dc.relation.ispartOfSpecialIssue
dc.relation.ispartOfSuppl
dc.relation.ispartOfVolume 51
dc.source.ID WOS:000260755700006
dc.type.publication Journal
dc.subject.otherAuthKeyword Circumferential skin temperature
dc.subject.otherAuthKeyword Multi-segment human bioheat model
dc.subject.otherAuthKeyword Skin blood perfusion rates
dc.subject.otherAuthKeyword Spatially non-uniform radiative environments
dc.subject.otherChemCAS
dc.subject.otherIndex Adsorption
dc.subject.otherIndex Blood
dc.subject.otherIndex Cardiovascular system
dc.subject.otherIndex Chlorine compounds
dc.subject.otherIndex Computer simulation
dc.subject.otherIndex Curing
dc.subject.otherIndex Drying
dc.subject.otherIndex Flow simulation
dc.subject.otherIndex Forecasting
dc.subject.otherIndex Hemodynamics
dc.subject.otherIndex Hosiery manufacture
dc.subject.otherIndex Activity levels
dc.subject.otherIndex Ambient conditions
dc.subject.otherIndex Arterial systems
dc.subject.otherIndex Artery blood
dc.subject.otherIndex Bio-heat
dc.subject.otherIndex Bio-heat equations
dc.subject.otherIndex Blood circulation
dc.subject.otherIndex Blood flows
dc.subject.otherIndex Blood perfusion
dc.subject.otherIndex Body segments
dc.subject.otherIndex Circumferential skin temperature
dc.subject.otherIndex Clothing layers
dc.subject.otherIndex Current modeling
dc.subject.otherIndex Experimental data
dc.subject.otherIndex Experimental validations
dc.subject.otherIndex Heat gains
dc.subject.otherIndex Human bodies
dc.subject.otherIndex Human body segments
dc.subject.otherIndex Human modelling
dc.subject.otherIndex Humid environments
dc.subject.otherIndex Latent heat losses
dc.subject.otherIndex Mass diffusion
dc.subject.otherIndex Model predictions
dc.subject.otherIndex Moisture adsorption
dc.subject.otherIndex Multi-segment human bioheat model
dc.subject.otherIndex Numerical simulations
dc.subject.otherIndex Semi-analytical modeling
dc.subject.otherIndex Skin blood perfusion rates
dc.subject.otherIndex Skin temperatures
dc.subject.otherIndex Spatially non-uniform radiative environments
dc.subject.otherIndex Thermal modelling
dc.subject.otherIndex Whole-body
dc.subject.otherIndex Skin
dc.subject.otherKeywordPlus THERMAL COMFORT
dc.subject.otherKeywordPlus HEAT-TRANSFER
dc.subject.otherKeywordPlus MATHEMATICAL-MODEL
dc.subject.otherKeywordPlus TEMPERATURE REGULATION
dc.subject.otherKeywordPlus PARTIAL-BODY
dc.subject.otherKeywordPlus FLOW
dc.subject.otherKeywordPlus SIMULATION
dc.subject.otherKeywordPlus RESPONSES
dc.subject.otherKeywordPlus ARTERIAL
dc.subject.otherKeywordPlus EXPOSURE
dc.subject.otherWOS Thermodynamics
dc.subject.otherWOS Engineering, Mechanical
dc.subject.otherWOS Mechanics


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


Browse

My Account