Abstract:
Mechanism synthesis requires the use of optimization methods to obtain approximate solution whenever the desired number of positions the mechanism is required to traverse exceeds a few (five in a 4R linkage). Deterministic gradient-based methods are usually impractical when used alone because they move in the direction of local minima. Random search methods on the other hand have a better chance of converging to a global minimum. This paper presents a tabu-gradient search based method for optimum synthesis of planar mechanisms. Using recency-based short-term memory strategy, tabu-search is initially used to find a solution near global minimum, followed by a gradient search to move the solution ever closer to the global minimum. A brief review of tabu search method is presented. Then, tabu-gradient search algorithm is applied to synthesize a four-bar mechanism for a 10-point path generation with prescribed timing task. As expected, Tabu-gradient base search resulted in a better solution with less number of iterations and shorter run-time.