AUB ScholarWorks

Mixing and evaporation of liquid droplets injected into an air stream flowing at all speeds

Show simple item record Moukalled F. Darwish M.
dc.contributor.editor 2008 2017-10-04T11:16:07Z 2017-10-04T11:16:07Z 2008
dc.identifier 10.1063/1.2912127
dc.identifier.issn 10706631
dc.description.abstract This paper deals with the formulation, implementation, and testing of three numerical techniques based on (i) a full multiphase approach, (ii) a multisize-group (MUSIG) approach, and (iii) a heterogeneous MUSIG (H-MUSIG) approach for the prediction of mixing and evaporation of liquid droplets injected into a stream of air. The numerical procedures are formulated following an Eulerian approach, within a pressure-based fully conservative finite volume method equally applicable in the subsonic, transonic, and supersonic regimes, for the discrete and continuous phases. The k-ε two-equation turbulence model is used to account for the droplet and gas turbulence with modifications to account for compressibility at high speeds. The performances of the various methods are compared by solving for two configurations involving streamwise and cross-stream sprayings into subsonic and supersonic streams. Results, which are displayed in the form of droplet velocity vectors, contour plots, and axial profiles, indicate that solutions obtained by the various techniques exhibit a similar behavior. Differences in values are relatively small with the largest being associated with droplet volume fractions and vapor mass fraction in the gas phase. This is attributed to the fact that with MUSIG and H-MUSIG, no droplet diameter equation is solved and the diameter of the various droplet phases is held constant, as opposed to the full multiphase approach. © 2008 American Institute of Physics.
dc.language English
dc.publisher MELVILLE
dc.relation.ispartof Publication Name: Physics of Fluids; Publication Year: 2008; Volume: 20; no. 4;
dc.source Scopus
dc.title Mixing and evaporation of liquid droplets injected into an air stream flowing at all speeds
dc.type Conference Paper
dc.contributor.affiliation Moukalled, F., Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Riad El-Solh 1107 2020 Beirut, Lebanon
dc.contributor.affiliation Darwish, M., Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Riad El-Solh 1107 2020 Beirut, Lebanon
dc.contributor.authorAddress Moukalled, F.; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Riad El-Solh 1107 2020 Beirut, Lebanon
dc.contributor.authorCorporate University: American University of Beirut; Faculty: Faculty of Engineering and Architecture; Department: Mechanical Engineering;
dc.contributor.authorDepartment Mechanical Engineering
dc.contributor.faculty Faculty of Engineering and Architecture
dc.contributor.authorInitials Moukalled, F
dc.contributor.authorInitials Darwish, M
dc.contributor.authorReprintAddress Moukalled, F (reprint author), Amer Univ Beirut, Fac Engn and Architecture, Dept Engn Mech, Riad El Solh 1107, Beirut 2020, Lebanon.
dc.contributor.authorUniversity American University of Beirut
dc.description.cited ABRAMZON B, 1989, INT J HEAT MASS TRAN, V32, P1605, DOI 10.1016-0017-9310(89)90043-4; AGGARWAL SK, 1995, J ENG GAS TURB POWER, V117, P453, DOI 10.1115-1.2814117; AGGARWAL SK, 1984, AIAA J, V22, P1448, DOI 10.2514-3.8802; Bertoli C, 1999, INT J HEAT FLUID FL, V20, P552, DOI 10.1016-S0142-727X(99)00044-2; BOGDANOFF DW, 1994, J PROPUL POWER, V10, P183, DOI 10.2514-3.23728; Brown DP, 2006, COMPUT FLUIDS, V35, P762, DOI 10.1016-j.compfluid.2006.01.012; Burger M, 2002, J ENG GAS TURB POWER, V124, P481, DOI 10.1115-1.1473153; CHEN XQ, 1995, NUMER HEAT TR A-APPL, V27, P143, DOI 10.1080-10407789508913693; Chen XQ, 1996, INT J HEAT MASS TRAN, V39, P441, DOI 10.1016-0017-9310(95)00162-3; Darwish M, 2001, NUMER HEAT TR B-FUND, V40, P99; FAETH GM, 1983, PROG ENERG COMBUST, V9, P1, DOI 10.1016-0360-1285(83)90005-9; Founti MA, 2007, NUMER HEAT TR B-FUND, V52, P51, DOI 10.1080-10407790701225496; Fox RO, 2008, J COMPUT PHYS, V227, P3058, DOI; Frossling N., 1938, Gerlands Beitrage zur Geophysik, V52; Gharaibah E, 2004, HEAT MASS TRANSF, P295; Godsave G.A.E., 1953, P 4 S INT COMB COMB, P818; GREENBERG JB, 1993, COMBUST FLAME, V93, P90, DOI 10.1016-0010-2180(93)90085-H; Hagessaether L., 2002, THESIS NORWEGIAN U S; HALLMANN M, 1995, J ENG GAS TURB POWER, V117, P112, DOI 10.1115-1.2812758; Hassanizadeh M, 1979, ADV WATER RESOUR, V2, P191, DOI 10.1016-0309-1708(79)90035-6; Hassanizadeh M, 1979, ADV WATER RESOUR, V2, P131, DOI 10.1016-0309-1708(79)90025-3; HUBBARD GL, 1975, INT J HEAT MASS TRAN, V18, P1003, DOI 10.1016-0017-9310(75)90217-3; JIN JD, 1985, COMBUSTION EMISSION, P213; Jones I., 2003, P 3 INT C CFD MIN PR, P13; KAY IW, 1992, J PROPUL POWER, V8, P507, DOI 10.2514-3.23505; Klose G, 2001, J ENG GAS TURB POWER, V123, P817, DOI 10.1115-1.1377010; KRAMER M, 1988, THESIS U KARLSRUHE; Krepper E, 2005, NUCL ENG DES, V235, P597, DOI 10.1016-j.nucengdes.2004.09.006; Launder B. E., 1974, Computer Methods in Applied Mechanics and Engineering, V3, DOI 10.1016-0045-7825(74)90029-2; LAURENT F, 2002, THESIS U CLAUDE BERN; Laurent F, 2004, J COMPUT PHYS, V194, P505, DOI; Luo H, 1996, AICHE J, V42, P1225, DOI 10.1002-aic.690420505; MASSOT M, 2003, THESIS U CLAUDE BERN; MELVILLE WK, 1979, INT J HEAT MASS TRAN, V22, P647, DOI 10.1016-0017-9310(79)90113-3; Miller RS, 1998, INT J MULTIPHAS FLOW, V24, P1025, DOI 10.1016-S0301-9322(98)00028-7; MOUKALLED F, 2003, P 12 IASTED INT C A, P1; Moukalled F, 2000, NUMER HEAT TR B-FUND, V37, P103; Patankar S. V., 1981, NUMERICAL HEAT TRANS; Pereira JCF, 1996, J HAZARD MATER, V46, P253, DOI 10.1016-0304-3894(95)00077-1; RAJASEKARAN A, 2006, 42 AIAA ASME SAE ASE; Sazhin SS, 2006, PROG ENERG COMBUST, V32, P162, DOI 10.1016-j.pecs.2005.11.001; Sazhin SS, 2005, INT J HEAT MASS TRAN, V48, P4215, DOI 10.1016-j.ijheatmasstransfer.2005.04.007; SHI JM, 2004, 2004 ANN REPORT I SA, P21; Sommerfeld M, 1998, INT J HEAT FLUID FL, V19, P10, DOI 10.1016-S0142-727X(97)10002-9; Spalding D.B., 1953, P 4 S INT COMB, P847; TALLEY DG, 1986, P 21 S INT COMB COMB, P609; TSOURIS C, 1994, AICHE J, V40, P395, DOI 10.1002-aic.690400303; Yeoh GH, 2004, CHEM ENG SCI, V59, P3125, DOI 10.1016-j.ces.2004.04.023
dc.description.citedCount 2
dc.description.citedTotWOSCount 2
dc.description.citedWOSCount 2
dc.format.extentCount 1
dc.identifier.articleNo 40804
dc.identifier.coden PHFLE
dc.identifier.scopusID 43149092914
dc.relation.ispartOfISOAbbr Phys. Fluids
dc.relation.ispartOfIssue 4
dc.relation.ispartofPubTitle Physics of Fluids
dc.relation.ispartofPubTitleAbbr Phys. Fluids
dc.relation.ispartOfVolume 20
dc.source.ID WOS:000255456600014
dc.type.publication Journal
dc.subject.otherIndex Air streams
dc.subject.otherIndex Axial profiles
dc.subject.otherIndex Continuous phasis
dc.subject.otherIndex Contour plot
dc.subject.otherIndex Droplet diameters
dc.subject.otherIndex Droplet phasis
dc.subject.otherIndex Droplet velocity
dc.subject.otherIndex Eulerian approach
dc.subject.otherIndex Gas turbulence
dc.subject.otherIndex Gasphase
dc.subject.otherIndex Liquid droplets
dc.subject.otherIndex Multiphase approach
dc.subject.otherIndex Numerical procedures
dc.subject.otherIndex Numerical techniques
dc.subject.otherIndex Pressure-based
dc.subject.otherIndex Two-equation turbulence models
dc.subject.otherIndex Vapor mass
dc.subject.otherIndex Evaporation
dc.subject.otherIndex Finite volume method
dc.subject.otherIndex Liquids
dc.subject.otherIndex Mixing
dc.subject.otherIndex Multiphase flow
dc.subject.otherIndex Numerical methods
dc.subject.otherIndex Phase transitions
dc.subject.otherIndex Turbulence models
dc.subject.otherIndex Vapors
dc.subject.otherIndex Euler equations
dc.subject.otherIndex Flow velocity
dc.subject.otherIndex Subsonic flow
dc.subject.otherIndex Transonic flow
dc.subject.otherIndex Volume fraction
dc.subject.otherIndex Drops
dc.subject.otherIndex Full multiphase approach
dc.subject.otherIndex Mass fraction
dc.subject.otherIndex Multisize-group approach
dc.subject.otherIndex Drops
dc.subject.otherIndex Euler equations
dc.subject.otherIndex Evaporation
dc.subject.otherIndex Finite volume method
dc.subject.otherIndex Flow velocity
dc.subject.otherIndex Mixing
dc.subject.otherIndex Subsonic flow
dc.subject.otherIndex Transonic flow
dc.subject.otherIndex Turbulence models
dc.subject.otherIndex Volume fraction
dc.subject.otherKeywordPlus TURBULENT DISPERSIONS
dc.subject.otherKeywordPlus NUMERICAL-SIMULATION
dc.subject.otherKeywordPlus UNIFIED FORMULATION
dc.subject.otherKeywordPlus SPRAY EVAPORATION
dc.subject.otherKeywordPlus SEGREGATED CLASS
dc.subject.otherKeywordPlus MODELS
dc.subject.otherKeywordPlus COALESCENCE
dc.subject.otherKeywordPlus COMBUSTION
dc.subject.otherKeywordPlus COMPUTATION
dc.subject.otherKeywordPlus ALGORITHMS
dc.subject.otherWOS Mechanics
dc.subject.otherWOS Physics, Fluids and Plasmas

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


My Account