Abstract:
Colloss® and Colloss-E® are sterile acellular lyophilizates extracted from bovine and equine bone matrix, respectively. Animal and clinical studies have shown that these xenogenic bone matrix extracts (BMEs) are effective as bone graft substitutes. In this report, we investigated the effect of Colloss and Colloss-E on human adult in vitro-expanded bone marrow-derived mesenchymal stem cells (BMMSCs). Specifically, we assessed whether these xenogenic BMEs induced osteoblastic differentiation of cultured BMMSC. We show that BMMSCs treated with either Colloss or Colloss-E exhibited characteristic osteoblastic morphological changes accompanied by the expression of osteoblast-specific markers, such as alkaline phosphatase activity, osteopontin secretion and calcium deposits, explicitly demonstrating that these bone matrix extracts induce osteoblastic differentiation of BMMSCs in vitro. Hence, xenogenic BMEs induce bone-specific differentiation of BMMSCs, presumably through providing stem cells with structural and soluble mediators that mimic the in vivo microenvironment. These results may explain the in vivo mode of action of these medical devices, and potentially provide a novel tissue engineering-based treatment of bone defect, using autologous BMMSCs pretreated with BMEs. © 2007 Future Medicine Ltd.