dc.contributor.author |
Sharara-Chami R.I. |
dc.contributor.author |
Zhou Y. |
dc.contributor.author |
Ebert S. |
dc.contributor.author |
Pacak K. |
dc.contributor.author |
Ozcan U. |
dc.contributor.author |
Majzoub J.A. |
dc.contributor.editor |
|
dc.date |
Jun-2012 |
dc.date.accessioned |
2017-10-05T16:01:16Z |
dc.date.available |
2017-10-05T16:01:16Z |
dc.date.issued |
2012 |
dc.identifier |
10.1016/j.biocel.2012.02.016 |
dc.identifier.isbn |
|
dc.identifier.issn |
13572725 |
dc.identifier.uri |
http://hdl.handle.net/10938/19401 |
dc.description.abstract |
Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism. © 2012 Elsevier Ltd. |
dc.format.extent |
|
dc.format.extent |
Pages: (905-913) |
dc.language |
English |
dc.publisher |
OXFORD |
dc.relation.ispartof |
Publication Name: International Journal of Biochemistry and Cell Biology; Publication Year: 2012; Volume: 44; no. 6; Pages: (905-913); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice |
dc.type |
Article |
dc.contributor.affiliation |
Sharara-Chami, R.I., Department of Anesthesiology, Harvard Medical School, Children's Hospital Boston, Boston, MA 02115, United States, Department of Pediatrics and Adolescent Medicine, Beirut Medical Center, American University, Beirut, Lebanon |
dc.contributor.affiliation |
Zhou, Y., Department of Medicine, Harvard Medical School, Children's Hospital Boston, Boston, MA 02115, United States |
dc.contributor.affiliation |
Ebert, S., Biomedical Sciences Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, United States |
dc.contributor.affiliation |
Pacak, K., Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States |
dc.contributor.affiliation |
Ozcan, U., Department of Medicine, Harvard Medical School, Children's Hospital Boston, Boston, MA 02115, United States |
dc.contributor.affiliation |
Majzoub, J.A., Department of Medicine, Harvard Medical School, Children's Hospital Boston, Boston, MA 02115, United States |
dc.contributor.authorAddress |
Sharara-Chami, R.I.; Department of Pediatrics and Adolescent Medicine, Beirut Medical Center, American University, Beirut, Lebanon; email: rsharara@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut Medical Center; Faculty: Faculty of Medicine; Department: Pediatrics and Adolescent Medicine; |
dc.contributor.authorDepartment |
Pediatrics and Adolescent Medicine |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
rsharara@aub.edu.lb |
dc.contributor.faculty |
Faculty of Medicine |
dc.contributor.authorInitials |
Sharara-Chami, RI |
dc.contributor.authorInitials |
Zhou, YJ |
dc.contributor.authorInitials |
Ebert, S |
dc.contributor.authorInitials |
Pacak, K |
dc.contributor.authorInitials |
Ozcan, U |
dc.contributor.authorInitials |
Majzoub, JA |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
Sharara-Chami, RI (reprint author), Amer Univ Beirut, Med Ctr, Dept Pediat and Adolescent Med, Div Pediat Crit Care Med, Beirut, Lebanon. |
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut Medical Center |
dc.description.cited |
BAHNSEN M, 1984, AM J PHYSIOL, V247, pE173; BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911; BOYLE PJ, 1989, AM J PHYSIOL, V256, pE651; Brouha L, 1939, J PHYSIOL-LONDON, V95, P431; Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373-clinchem.2008.112797; Cannon WB, 1929, SCIENCE, V70, P500, DOI 10.1126-science.70.1821.500-a; Chakravarthy MV, 2009, CELL, V138, P476, DOI 10.1016-j.cell.2009.05.036; CRYER PE, 1993, AM J PHYSIOL, V264, pE149; CRYER PE, 1984, AM J PHYSIOL, V247, pE198; CRYER PE, 1993, INT J OBESITY, V17, pS43; DEFEO P, 1991, AM J PHYSIOL, V261, pE725; DETER RL, 1967, J CELL BIOL, V33, P437, DOI 10.1083-jcb.33.2.437; DETER RL, 1967, J CELL BIOL, V35, pC11, DOI 10.1083-jcb.35.2.C11; DUNER H, 1953, NATURE, V171, P481, DOI 10.1038-171481b0; Ebert SN, 2004, DEV DYNAM, V231, P849, DOI 10.1002-dvdy.20188; Fischer J, 2009, NATURE, V458, P894, DOI 10.1038-nature07848; Gan SK, 2008, CLIN SCI, V114, P543, DOI 10.1042-CS20070461; GOLDSTEIN DS, 1984, CLIN CHEM, V30, P815; Hashimoto T, 2000, J BIOL CHEM, V275, P28918, DOI 10.1074-jbc.M910350199; Hotchkiss RS, 2009, NEW ENGL J MED, V361, P1570, DOI 10.1056-NEJMra0901217; Kondomerkos DJ, 2005, HISTOL HISTOPATHOL, V20, P689; Kulkarni RN, 2002, NAT GENET, V31, P111, DOI 10.1038-ng872; LEE SST, 1995, MOL CELL BIOL, V15, P3012; Levine B, 2008, CELL, V132, P27, DOI 10.1016-j.cell.2007.12.018; Lin JD, 2009, MOL ENDOCRINOL, V23, P2, DOI 10.1210-me.2008-0344; LO S, 1970, J APPL PHYSIOL, V28, P234; Michael MD, 2000, MOL CELL, V6, P87, DOI 10.1016-S1097-2765(00)00010-1; MITRAKOU A, 1991, AM J PHYSIOL, V260, pE67; Mizushima N, 2008, NATURE, V451, P1069, DOI 10.1038-nature06639; Mizushima N, 2007, ANNU REV NUTR, V27, P19, DOI 10.1146-annurev.nutr.27.061406.093749; PE Cryer, 1993, INT J OBES RELAT S3, V17, pS68; RIZZA RA, 1980, J CLIN INVEST, V65, P682, DOI 10.1172-JCI109714; Rosa F, 1971, J ULTRASTRUCT RES, V34, P205; SCHONEVELD G, 2004, BIOCHIM BIOPHYS ACTA, V1680, P114; SCHWARTZ NS, 1987, J CLIN INVEST, V79, P777, DOI 10.1172-JCI112884; Singh R, 2009, NATURE, V458, P1131, DOI 10.1038-nature07976; SUTHERLAND EW, 1958, J BIOL CHEM, V232, P1077; Ueki K, 2006, NAT GENET, V38, P583, DOI 10.1038-ng1787; Vieira E, 2004, N-S ARCH PHARMACOL, V369, P179, DOI 10.1007-s00210-003-0858-5; Weismuller T, 2004, J PHARMACOL SCI, V95, P335, DOI 10.1254-jphs.FPE04001X; Yang L, 2010, CELL METAB, V11, P467, DOI 10.1016-j.cmet.2010.04.005 |
dc.description.citedCount |
4 |
dc.description.citedTotWOSCount |
6 |
dc.description.citedWOSCount |
6 |
dc.format.extentCount |
9 |
dc.identifier.articleNo |
|
dc.identifier.coden |
IJBBF |
dc.identifier.pubmedID |
22405854 |
dc.identifier.scopusID |
84862827930 |
dc.identifier.url |
|
dc.publisher.address |
THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND |
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
|
dc.relation.ispartOfISOAbbr |
Int. J. Biochem. Cell Biol. |
dc.relation.ispartOfIssue |
6 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
International Journal of Biochemistry and Cell Biology |
dc.relation.ispartofPubTitleAbbr |
Int. J. Biochem. Cell Biol. |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
44 |
dc.source.ID |
WOS:000304490700013 |
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Autophagy |
dc.subject.otherAuthKeyword |
Brown adipose tissue |
dc.subject.otherAuthKeyword |
Epinephrine |
dc.subject.otherAuthKeyword |
Fasting |
dc.subject.otherAuthKeyword |
Metabolism |
dc.subject.otherAuthKeyword |
Steatosis |
dc.subject.otherChemCAS |
adrenalin, 51-43-4, 55-31-2, 6912-68-1 |
dc.subject.otherChemCAS |
glucose, 50-99-7, 84778-64-3 |
dc.subject.otherChemCAS |
peroxisome proliferator activated receptor alpha, 147258-70-6 |
dc.subject.otherChemCAS |
Blood Glucose |
dc.subject.otherChemCAS |
DNA Primers |
dc.subject.otherChemCAS |
Epinephrine, 51-43-4 |
dc.subject.otherChemCAS |
Liver Glycogen |
dc.subject.otherIndex |
adrenalin |
dc.subject.otherIndex |
fibroblast growth factor 21 |
dc.subject.otherIndex |
glucose |
dc.subject.otherIndex |
peroxisome proliferator activated receptor alpha |
dc.subject.otherIndex |
peroxisome proliferator activated receptor gamma |
dc.subject.otherIndex |
sterol regulatory element binding protein 1c |
dc.subject.otherIndex |
triacylglycerol |
dc.subject.otherIndex |
amino acid sequence |
dc.subject.otherIndex |
animal experiment |
dc.subject.otherIndex |
animal model |
dc.subject.otherIndex |
animal tissue |
dc.subject.otherIndex |
article |
dc.subject.otherIndex |
autophagy |
dc.subject.otherIndex |
diet restriction |
dc.subject.otherIndex |
fatty liver |
dc.subject.otherIndex |
gluconeogenesis |
dc.subject.otherIndex |
glucose blood level |
dc.subject.otherIndex |
glycogenolysis |
dc.subject.otherIndex |
ketoacidosis |
dc.subject.otherIndex |
lipid metabolism |
dc.subject.otherIndex |
male |
dc.subject.otherIndex |
mouse |
dc.subject.otherIndex |
nonhuman |
dc.subject.otherIndex |
Absorptiometry, Photon |
dc.subject.otherIndex |
Animals |
dc.subject.otherIndex |
Autophagy |
dc.subject.otherIndex |
Base Sequence |
dc.subject.otherIndex |
Blood Glucose |
dc.subject.otherIndex |
Blotting, Western |
dc.subject.otherIndex |
DNA Primers |
dc.subject.otherIndex |
Epinephrine |
dc.subject.otherIndex |
Fasting |
dc.subject.otherIndex |
Fatty Liver |
dc.subject.otherIndex |
Liver Glycogen |
dc.subject.otherIndex |
Male |
dc.subject.otherIndex |
Mice |
dc.subject.otherIndex |
Reverse Transcriptase Polymerase Chain Reaction |
dc.subject.otherIndex |
Mus |
dc.subject.otherKeywordPlus |
ADRENERGIC-MECHANISMS |
dc.subject.otherKeywordPlus |
GLYCEMIC THRESHOLDS |
dc.subject.otherKeywordPlus |
CELLULAR AUTOPHAGY |
dc.subject.otherKeywordPlus |
INSULIN-RESISTANCE |
dc.subject.otherKeywordPlus |
RAT LIVER |
dc.subject.otherKeywordPlus |
GLUCAGON |
dc.subject.otherKeywordPlus |
DISEASE |
dc.subject.otherKeywordPlus |
HUMANS |
dc.subject.otherKeywordPlus |
ALPHA |
dc.subject.otherKeywordPlus |
COUNTERREGULATION |
dc.subject.otherWOS |
Biochemistry and Molecular Biology |
dc.subject.otherWOS |
Cell Biology |