Abstract:
Sphingolipids (SLs) have a biomodulatory role in physiological as well as pathological cardiovascular conditions. This study aims to assess the variation of SL mediators and metabolizing enzymes in the growing and hypoxic rat heart. Sprague-Dawley rats were placed in a hypoxic environment at birth. Control animals remained in room air. In control animals, activities of acidic-sphingomyelinase (A-SMase), sphingomyelin synthase (SMS), glucosylceramide synthase (GCS), and ceramidase decreased with age in both ventricles whereas activity of neutral-sphingomyelinase (N-SMase) increased with age. Hypoxic RV mass was 171 and 229percent that of controls, at 4 and 8 weeks, respectively. This was accompanied by an increase in RV myocardial ceramide synthesis, consumption and breakdown, with a net effect of suppression of ceramide accumulation and increase in diacylglycerol (DAG) concentration. In addition, significant increase in activities of: A-SMase by 26 and 29percent, SMS by 108 and 40percent, and ceramidase by 66 and 35percent, in the hypoxic RV rats as compared to controls, was noted at 4 and 8 weeks of age, respectively. Sphingolipids and their regulating enzymes appear to play a role in adaptive responses to chronic hypoxia in the neonatal rat heart. © 2005 Elsevier Inc. All rights reserved.