dc.contributor.author |
Dergarabetian E.M. |
dc.contributor.author |
Ghattass K.I. |
dc.contributor.author |
El-Sitt S.B. |
dc.contributor.author |
Al Mismar R.M. |
dc.contributor.author |
El-Baba C.O. |
dc.contributor.author |
Itani W.S. |
dc.contributor.author |
Melhem N.M. |
dc.contributor.author |
El-Hajj H.A. |
dc.contributor.author |
Bazarbachi A.A.H. |
dc.contributor.author |
Schneider-Stock R. |
dc.contributor.author |
Gali-Muhtasib H.U. |
dc.contributor.editor |
|
dc.date |
Jan-2013 |
dc.date.accessioned |
2017-10-18T13:38:22Z |
dc.date.available |
2017-10-18T13:38:22Z |
dc.date.issued |
2013 |
dc.identifier |
|
dc.identifier.isbn |
|
dc.identifier.issn |
19450494 |
dc.identifier.uri |
http://hdl.handle.net/10938/20720 |
dc.description.abstract |
We show that HTLV-1 negative leukemia cells are more sensitive to TQ due to higher levels of drug-induced reactive oxygen species (ROS). PreG1 population in HTLV-1 negative Jurkat and CEM was higher than HTLV-1 transformed HuT-102 and MT-2 cells. Peripheral blood mononuclear cells were more resistant. Hoechst staining indicated more features of apoptosis, namely nuclear blebs and shrunken nuclei in HuT-102 than Jurkat. A greater depletion of the antioxidant enzyme glutathione occurred in Jurkat, which consequently led to an increase in ROS, loss of mitochondrial membrane potential, cytochrome c release, activation of caspases 3 and 9, and cleavage of PARP. Treatment with z- VAD-fmk partially reversed TQ-induced apoptosis, suggesting a caspase-dependent mechanism. N-acetyl cysteine prevented apoptosis providing evidence that cell death is ROSdependent. Catalase prevented apoptosis to a lesser extent than NAC. In summary, TQ induces apoptosis in adult T cell leukemia-lymphoma by decreasing glutathione and increasing ROS, and levels of ROS underlie the differential cellular response to TQ. Our data suggest a potential therapeutic role for TQ in sensitizing HTLV-I-negative T-cell lymphomas. |
dc.format.extent |
|
dc.format.extent |
Pages: (706-719) |
dc.language |
English |
dc.publisher |
|
dc.relation.ispartof |
Publication Name: Frontiers in Bioscience - Elite; Publication Year: 2013; no. 2; Pages: (706-719); |
dc.relation.ispartofseries |
|
dc.relation.uri |
|
dc.source |
Scopus |
dc.subject.other |
|
dc.title |
Thymoquinone induces apoptosis in malignant T-cells via generation of ROS |
dc.type |
Article |
dc.contributor.affiliation |
Dergarabetian, E.M., Department of Biology, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
Ghattass, K.I., Department of Biology, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
El-Sitt, S.B., Department of Biology, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
Al Mismar, R.M., Department of Biology, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
El-Baba, C.O., Experimental Tumor Pathology, Institute for Pathology, University Erlangen-Nuremberg, Germany |
dc.contributor.affiliation |
Itani, W.S., Department of Biology, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
Melhem, N.M., Medical Laboratory Sciences Program, American University of Beirut, Beirut, Lebanon |
dc.contributor.affiliation |
El-Hajj, H.A., Internal Medicine, American University of Beirut, Lebanon |
dc.contributor.affiliation |
Bazarbachi, A.A.H., Internal Medicine, American University of Beirut, Lebanon |
dc.contributor.affiliation |
Schneider-Stock, R., Experimental Tumor Pathology, Institute for Pathology, University Erlangen-Nuremberg, Germany |
dc.contributor.affiliation |
Gali-Muhtasib, H.U., Department of Biology, American University of Beirut, Beirut, Lebanon |
dc.contributor.authorAddress |
Gali-Muhtasib, H.U.; Department of Biology, American University of Beirut, Beirut, Lebanon; email: amro@aub.edu.lb |
dc.contributor.authorCorporate |
University: American University of Beirut; Faculty: Faculty of Health Sciences; Department: Medical Laboratory Sciences Program; |
dc.contributor.authorDepartment |
Medical Laboratory Sciences Program |
dc.contributor.authorDivision |
|
dc.contributor.authorEmail |
|
dc.contributor.faculty |
Faculty of Health Sciences |
dc.contributor.authorInitials |
empty |
dc.contributor.authorOrcidID |
|
dc.contributor.authorReprintAddress |
|
dc.contributor.authorResearcherID |
|
dc.contributor.authorUniversity |
American University of Beirut |
dc.description.cited |
|
dc.description.citedCount |
3 |
dc.description.citedTotWOSCount |
|
dc.description.citedWOSCount |
|
dc.format.extentCount |
14 |
dc.identifier.articleNo |
|
dc.identifier.coden |
|
dc.identifier.pubmedID |
23277025 |
dc.identifier.scopusID |
84878477104 |
dc.identifier.url |
|
dc.publisher.address |
|
dc.relation.ispartofConference |
|
dc.relation.ispartofConferenceCode |
|
dc.relation.ispartofConferenceDate |
|
dc.relation.ispartofConferenceHosting |
|
dc.relation.ispartofConferenceLoc |
|
dc.relation.ispartofConferenceSponsor |
|
dc.relation.ispartofConferenceTitle |
|
dc.relation.ispartofFundingAgency |
SCHN477-7-3, DFG, Deutsche Forschungsgemeinschaft |
dc.relation.ispartofFundingAgency |
SCHN477-7-4, DFG, Deutsche Forschungsgemeinschaft |
dc.relation.ispartofFundingAgency |
SCHN477-12-2, DFG, Deutsche Forschungsgemeinschaft |
dc.relation.ispartOfISOAbbr |
|
dc.relation.ispartOfIssue |
2 |
dc.relation.ispartOfPart |
|
dc.relation.ispartofPubTitle |
Frontiers in Bioscience - Elite |
dc.relation.ispartofPubTitleAbbr |
Front. Biosci. Elite |
dc.relation.ispartOfSpecialIssue |
|
dc.relation.ispartOfSuppl |
|
dc.relation.ispartOfVolume |
|
dc.source.ID |
|
dc.type.publication |
Journal |
dc.subject.otherAuthKeyword |
Anticancer |
dc.subject.otherAuthKeyword |
Apoptosis |
dc.subject.otherAuthKeyword |
ROS |
dc.subject.otherAuthKeyword |
T-cell leukemia |
dc.subject.otherAuthKeyword |
Thymoquinone |
dc.subject.otherChemCAS |
acetylcysteine, 616-91-1 |
dc.subject.otherChemCAS |
caspase 3, 169592-56-7 |
dc.subject.otherChemCAS |
caspase 9, 180189-96-2 |
dc.subject.otherChemCAS |
cytochrome c, 9007-43-6, 9064-84-0 |
dc.subject.otherChemCAS |
glutathione, 70-18-8 |
dc.subject.otherChemCAS |
thymoquinone, 490-91-5 |
dc.subject.otherChemCAS |
catalase, 9001-05-2 |
dc.subject.otherChemCAS |
Amino Acid Chloromethyl Ketones |
dc.subject.otherChemCAS |
Benzoquinones |
dc.subject.otherChemCAS |
Catalase, 1.11.1.6 |
dc.subject.otherChemCAS |
Glutathione, 70-18-8 |
dc.subject.otherChemCAS |
Reactive Oxygen Species |
dc.subject.otherChemCAS |
benzyloxycarbonylvalyl-alanyl-aspartyl fluoromethyl ketone |
dc.subject.otherChemCAS |
thymoquinone, 490-91-5 |
dc.subject.otherIndex |
acetylcysteine |
dc.subject.otherIndex |
caspase 3 |
dc.subject.otherIndex |
caspase 9 |
dc.subject.otherIndex |
cytochrome c |
dc.subject.otherIndex |
glutathione |
dc.subject.otherIndex |
reactive oxygen metabolite |
dc.subject.otherIndex |
thymoquinone |
dc.subject.otherIndex |
benzoquinone derivative |
dc.subject.otherIndex |
benzyloxycarbonylvalyl alanyl aspartyl fluoromethyl ketone |
dc.subject.otherIndex |
benzyloxycarbonylvalyl-alanyl-aspartyl fluoromethyl ketone |
dc.subject.otherIndex |
catalase |
dc.subject.otherIndex |
glutathione |
dc.subject.otherIndex |
peptide chloromethyl ketone |
dc.subject.otherIndex |
reactive oxygen metabolite |
dc.subject.otherIndex |
thymoquinone |
dc.subject.otherIndex |
apoptosis |
dc.subject.otherIndex |
article |
dc.subject.otherIndex |
cell death |
dc.subject.otherIndex |
cell proliferation |
dc.subject.otherIndex |
cell viability |
dc.subject.otherIndex |
controlled study |
dc.subject.otherIndex |
enzyme activation |
dc.subject.otherIndex |
enzyme activity |
dc.subject.otherIndex |
human |
dc.subject.otherIndex |
human cell |
dc.subject.otherIndex |
Human T cell leukemia virus 1 |
dc.subject.otherIndex |
leukemia cell line |
dc.subject.otherIndex |
mitochondrial membrane potential |
dc.subject.otherIndex |
oxidative stress |
dc.subject.otherIndex |
peripheral blood mononuclear cell |
dc.subject.otherIndex |
protein cleavage |
dc.subject.otherIndex |
protein depletion |
dc.subject.otherIndex |
protein secretion |
dc.subject.otherIndex |
T cell leukemia |
dc.subject.otherIndex |
T lymphocyte |
dc.subject.otherIndex |
analysis of variance |
dc.subject.otherIndex |
animal |
dc.subject.otherIndex |
comparative study |
dc.subject.otherIndex |
drug effect |
dc.subject.otherIndex |
immunology |
dc.subject.otherIndex |
metabolism |
dc.subject.otherIndex |
physiology |
dc.subject.otherIndex |
T cell lymphoma |
dc.subject.otherIndex |
T lymphocyte |
dc.subject.otherIndex |
virology |
dc.subject.otherIndex |
Amino Acid Chloromethyl Ketones |
dc.subject.otherIndex |
Analysis of Variance |
dc.subject.otherIndex |
Animals |
dc.subject.otherIndex |
Apoptosis |
dc.subject.otherIndex |
Benzoquinones |
dc.subject.otherIndex |
Catalase |
dc.subject.otherIndex |
Glutathione |
dc.subject.otherIndex |
Human T-lymphotropic virus 1 |
dc.subject.otherIndex |
Humans |
dc.subject.otherIndex |
Jurkat Cells |
dc.subject.otherIndex |
Lymphoma, T-Cell |
dc.subject.otherIndex |
Membrane Potential, Mitochondrial |
dc.subject.otherIndex |
Reactive Oxygen Species |
dc.subject.otherIndex |
T-Lymphocytes |
dc.subject.otherKeywordPlus |
|
dc.subject.otherWOS |
|