AUB ScholarWorks

Hydrodynamic characterization of tubular reactors-contactors equipped with screen-type static mixers -

Show simple item record

dc.contributor.author Abou Hweij, Khaled Mohamad J.,
dc.date.accessioned 2017-08-30T14:05:47Z
dc.date.available 2017-08-30T14:05:47Z
dc.date.issued 2015
dc.date.submitted 2015
dc.identifier.other b18347617
dc.identifier.uri http://hdl.handle.net/10938/10623
dc.description Thesis (M.E.)-- American University of Beirut, Department of Mechanical Engineeering, 2015. ET:6232.
dc.description Advisor : Dr. Fouad Azizi, Professor, Mechanical Engineering, Chemical Engineering Program ; Members of Committee : Dr. Kamel Abou Ghali, Professor, Mechanical Engineering ; Dr. Mahmoud Al Hindi, Professor, Mechanical Engineering- Chemical Engineering Program.
dc.description Includes bibliographical references (leaves 68-72)
dc.description.abstract This work discusses the characteristics of a single phase liquid and two-phase gas-liquid flow through tubular reactors-contactors equipped with screen-type static mixers from a hydrodynamic and macromixing perspective. The effect of changing the screen geometry, number of mixing elements, reactor configuration, and the operating conditions, were investigated by using four different screen types of varying mesh numbers. For this reason, in the single phase flow study, pressure drop was measured over a wide range of flow rates (2,300 ≤ Re ≤ 21,500) and was found to increase with a decreasing mesh opening. Friction factor values are also reported in the work, but when compared to other types of motionless mixers, screen-type mixers were found to require much lower energy requirements with very low recorded Z values (1.15 ≤ Z ≤ 5) that are two to three orders of magnitude lower than those reported for other motionless mixers. While in two-phase gas-liquid flow study, pressure drop was measured over a wide range of flow rates (11,500 ≤ Re ≤ 28,000) and was found to increase with a decreasing mesh opening. However, the efficient dispersion of the gas phase in the presence of screens and the consequent generation of microbubbles, was found to reduce the drag coefficient of the screen and hence reduce the pressure drop with an increase in the gas holdup. Furthermore, in the single phase liquid phase study, residence time distribution experiments were conducted in the transitional and turbulent regimes (2,300 ≤ Re ≤ 11,500), where they were conducted in the turbulent regime (18,900 ≤ Re ≤ 29,200) in the gas-liquid flow study. Using a deconvolution technique the RTD function was extracted in order to quantify the axial-longitudinal dispersion. In both single phase liquid and two-phase gas-liquid flow studies, the findings highlight that regardless of the number and geometry of the mixer, reactor configuration, and-or operating conditions, axial dispersion coeffi
dc.format.extent 1 online resource (xv, 73 leaves) : illustrations (some color) ; 30 cm
dc.language.iso eng
dc.relation.ispartof Theses, Dissertations, and Projects
dc.subject.classification ET:006232
dc.subject.lcsh Single-phase flow.
dc.subject.lcsh Two-phase flow.
dc.subject.lcsh Hydrodynamics.
dc.subject.lcsh Mixing.
dc.title Hydrodynamic characterization of tubular reactors-contactors equipped with screen-type static mixers -
dc.type Thesis
dc.contributor.department Faculty of Engineering and Architecture.
dc.contributor.department Department of Mechanical Engineering,
dc.contributor.institution American University of Beirut.


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


Browse

My Account