AUB ScholarWorks

Synthesis of carbon integration networks coupled with hydrate suppression and moisture removal options -

Show simple item record

dc.contributor.author Klaimi, Rachid Alim
dc.date.accessioned 2018-10-11T11:43:19Z
dc.date.available 2018-10-11T11:43:19Z
dc.date.copyright 2020-05
dc.date.issued 2018
dc.date.submitted 2018
dc.identifier.other b21085663
dc.identifier.uri http://hdl.handle.net/10938/21492
dc.description Thesis. M.S. American University of Beirut. Department of Chemical and Petroleum Engineering, 2018. ET:6782$Advisor : Dr. Sabla Alnouri, Assistant Professor, Chemical and Petroleum Engineering ; Committee members : Dr. Joseph Zeaiter, Associate Professor, Chemical and Petroleum Engineering ; Dr. Mohammad N. Ahmad, Professor, Chemical and Petroleum Engineering ; Dr. Hussein Tarhini, Assistant Professor, Industrial Engineering and Management.
dc.description Includes bibliographical references (leaves 64-72)
dc.description.abstract The excessive increase in carbon dioxide emissions through the past several decades has raised global climate change concerns. As such, environmental policy makers have been looking into the implementation of efficient strategies that would ultimately reduce greenhouse gas (GHG) emission levels, and meet strict emissions targets. As part of a national emission reduction strategy, the reduction of carbon-dioxide emissions from industrial activities has been proven to be very significant. This instigated the need for a systematic carbon integration approach that can yield cost-effective carbon integration networks, while meeting prescribed carbon dioxide emission reduction targets in industrial cities. A novel carbon integration methodology has been previously proposed as a carbon network source-sink mapping approach using a Mixed Integer Nonlinear Program (MINLP), and was found to be very effective to devise emission control strategies in industrial cities. This work aims to further improve the design process of carbon integration networks, by coupling carbon integration networks with hydrate suppression-moisture removal options. This was found vital for the prevention of any potential hazards that are associated with the transportation of carbon dioxide in pipelines, such as hydrate formation and various corrosion effects, which may result from moisture retention. An extensive analysis of carbon capture, dehydration, inhibition, compression, and transmission options have all been incorporated into the network design process, in the course of determining cost-optimal solutions for carbon dioxide networks. The proposed approach has been illustrated using an industrial city case study that shows how the integration between different plants in a specific site could be a valuable method for carbon footprint reduction.  
dc.format.extent 1 online resource (xiv, 72 leaves) : color illustrations
dc.language.iso eng
dc.subject.classification ET:006782
dc.subject.lcsh Carbon.$Hydrates.$Moisture.$Greenhouse gases.$Greenhouse effect, Atmospheric.
dc.title Synthesis of carbon integration networks coupled with hydrate suppression and moisture removal options -
dc.type Thesis
dc.contributor.department Department of Chemical and Petroleum Engineering
dc.contributor.faculty Maroun Semaan Faculty of Engineering and Architecture
dc.contributor.institution American University of Beirut


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search AUB ScholarWorks


Browse

My Account